Advertisement

Brazilian Journal of Botany

, Volume 40, Issue 2, pp 439–450 | Cite as

Leaf phenology and morphofunctional variation in Myrcia amazonica DC. (Myrtaceae) in gallery forest and “campo rupestre” vegetation in the Chapada Diamantina, Brazil

  • Aline Cristina da Silva Moraes
  • Angela Pierre Vitória
  • Davi Rodrigo Rossatto
  • Lia d’Afonsêca Pedreira de Miranda
  • Ligia Silveira Funch
Original Article

Abstract

Myrcia amazonica DC. occurs in gallery forest and “campo rupestre” vegetation in the Chapada Diamantina, Bahia State, Brazil—habitats with contrasting irradiance and humidity conditions. We evaluated variations in aspects of the cost–benefit relationships of leaf maintenance and photosynthetic activity (phenology, leaf age, gas exchange, and photosynthetic pigments) and the maintenance of a positive water balance (leaf water potential, wood density, and leaf attributes) in two populations of M. amazonica occurring in those habitats. Our hypothesis was that this species would show more efficient water use associated with maintaining its leaves for longer periods in “campo rupestre” vegetation rather than in gallery forests—linked to the environmental constraints on “campo rupestre” population (lower water availability and elevated irradiance). We found that individuals growing in “campo rupestre” showed greater stomatal conductance, CO2 assimilation, transpiration rates, leaf thicknesses, leaf succulence, daily water potential amplitudes, and leaf longevity but lower wood densities as compared to the gallery forest population. Even with wide contrasts in terms of all of these parameters, both populations maintained perennial leaf patterns, despite with variations in the intensities and durations of leaf production (being more intense and of shorter duration in the “campo rupestre” population). Myrcia amazonica demonstrated high functional and morphological plasticity of attributes related to its survival and growth in these habitats. Our hypothesis was confirmed, as “campo rupestre” plants showed morphofunctional strategies associated with resource conservation, including more efficient water use.

Keywords

Gas exchange Phenodynamics Photosynthetic pigments Water potential Wood density 

Notes

Acknowledgements

The authors would like to thank the Postgraduate Program in Botany/Universidade Estadual de Feira de Santana for providing the necessary infrastructure for the monthly collections and the experiments undertaken and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (305333/2009-7) and the Fundação de Amparo à Pesquisa do Estado da Bahia (5303/2009) for their financial support. A.C.S.M. was supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) Grant and A.P.V. by a CNPq Pq Grant (306758/2013-0).

Supplementary material

40415_2016_348_MOESM1_ESM.docx (38 kb)
Supplementary material 1 (DOCX 37 kb)

References

  1. Abbruzzese G, Beritognolo I, Muleo R, Piazzai M, Sabatti M, Mugnozza GS, Kuzminsky E (2009) Leaf morphological plasticity and stomatal conductance in three Populus alba L. genotypes subjected to salt stress. Environ Exp Bot 66:381–388. doi: 10.1016/j.envexpbot.2009.04.008 CrossRefGoogle Scholar
  2. Alvares CA, Stape JL, Sentelhas PC, Gonçalves JLM, Sparovek G (2013) Köppen’s climate classification map for Brazil. Meteorol Z 22:711–728CrossRefGoogle Scholar
  3. Andrade JL, Meinzer FC, Goldstein G, Holbrook NM, Cavelier J, Jackson D, Silvera K (1998) Regulation of the water flux throughout trunks, branches and leaves in trees of a lowland tropical forest. Oecologia 115:463–471. doi: 10.1007/s004420050542 CrossRefPubMedGoogle Scholar
  4. Barbosa RI, Ferreira CA (2004) Densidade básica da madeira de um ecossistema de “campina” em Roraima, Amazônia Brasileira. Acta Amazon 34:587–591CrossRefGoogle Scholar
  5. Bloor JMG, Grubb PJ (2004) Morphological plasticity of shade-tolerant tropical rainforest tree seedlings exposed to light changes. Funct Ecol 18:337–348. doi: 10.1111/j.0269-8463.2004 CrossRefGoogle Scholar
  6. Boardman NK (1977) Comparative photosynthesis of sun and shade plants. Annu Rev Plant Physiol 28:355–377. doi: 10.1146/annurev.pp.28.060177.002035 CrossRefGoogle Scholar
  7. Borchert R (1994) Soil and stem water storage determine phenology and distribution of tropical dry forests trees. Ecology 75:1437–1449CrossRefGoogle Scholar
  8. Braga N, Vitória AP, Souza G, Barros C, Freitas L (2016) Weak relationships between leaf phenology and isohydric and anisohydric behavior in lowland wet tropical forest trees. Biotropica 48:453–464CrossRefGoogle Scholar
  9. Capuzzo JP, Rossatto DR, Franco AC (2012) Differences in morphological and physiological leaf characteristics between Tabebuia aurea and T. impetiginosa is related to their typical habitats of occurrence. Acta Bot Bras 26:519–526CrossRefGoogle Scholar
  10. Chazdon RL (1986) Light variation and carbon gain in rain forest understory palms. J Ecol 74:995–1012CrossRefGoogle Scholar
  11. Chen HYH, Klinka K (1997) Light availability and photosynthesis of Pseudotsuga menziesii seedlings grown in the open and the forest understory. Tree Physiol 17:23–29CrossRefPubMedGoogle Scholar
  12. Choat B, Jansen S, Brodribb TJ, Cochard H, Delzon S, Bhaskar R, Bucci SJ, Feild TS, Gleason SM, Hacke UG, Jacobsen AL, Lens F, Maherali H, Martínez-Vilalta J, Mayr S, Mencuccini M, Mitchell PJ, Nardini A, Pittermann J, Pratt RB, Sperry JS, Westoby M, Wright IJ, Zanne AE (2012) Global convergence in the vulnerability of forests to drought. Nature 491:752–756. doi: 10.1038/nature11688 PubMedGoogle Scholar
  13. Conceição AA, Funch LS, Pirani JR (2007) Reproductive phenology, pollination and seed dispersal syndromes on sandstone outcrop vegetation in the “Chapada Diamantina”, northeastern Brazil: population and community analyses. Rev Bras Bot 30:475–485Google Scholar
  14. Companhia de Pesquisa de Recursos Minerais – CPRM (1994) Projeto Chapada Diamantina, Parque Nacional da Chapada Diamantina—BA: Informações básicas para a gestão territorial—diagnóstico do meio físico e da vegetação. CPRM, SalvadorGoogle Scholar
  15. Fournier LA (1974) Un método cuantitativo para la medición de características fenológicas en árboles. Turrialba 2:422–423Google Scholar
  16. Franco AC, Bustamante M, Caldas LS, Goldstein G, Meinzer FC, Kozovits AR, Rundel P, Coradin VTR (2005) Leaf functional traits of Neotropical savanna trees in relation to seasonal water deficit. Trees 19:326–335CrossRefGoogle Scholar
  17. Funch LS, Funch R, Barroso GM (2002) Phenology of gallery and montane forest in the Chapada Diamantina, Bahia, Brazil. Biotropica 34:40–50CrossRefGoogle Scholar
  18. Funch LS, Rodal MJN, Funch RR (2008) Floristic aspects of forests of the Chapada Diamantina, Bahia, Brazil. In: Thomas W, Britton EG (eds) The coastal forests of Northeastern Brazil. Springer and NYBG Press, New York, pp 193–220Google Scholar
  19. Funch RR, Harley RM, Funch LS (2009) Mapping and evaluation of the state of conservation of the vegetation in and surrounding the Chapada Diamantina National Park, NE Brazil. Biota Neotrop 9:21–30CrossRefGoogle Scholar
  20. Gamage HK, Hashton MS, Singhakumara BMP (2003) Leaf structure of Syzygium spp. (Myrtaceae) in relation to site affinity within a tropical rain forest. Bot J Linn Soc 141:365–377CrossRefGoogle Scholar
  21. Ganie AH, Reshi ZA, Wafai BA, Puijalon S (2014) Phenotypic plasticity: cause of the successful spread of the genus Potamogeton in the Kashmir Himalaya. Aquat Bot 120:283–289CrossRefGoogle Scholar
  22. Goulart MF, Lemos Filho JP, Lovato MB (2005) Phenological variation within and among populations of Plathymenia reticulata in Brazilian Cerrado, the Atlantic Forest and transitional sites. Ann Bot 96:445–455CrossRefPubMedPubMedCentralGoogle Scholar
  23. Hogan KP, Machado JL (2012) La luz solar: consecuencias biológicas y medición. In: Guariguata MR, Kattan GH (eds) Ecología y conservación de Bosques Neotropicais. Editorial tecnológica de Costa Rica, Cartago, pp 119–143Google Scholar
  24. Jones HG (1992) Plants and microclimate: a quantitative approach to environmental plant physiology, 2nd edn. Cambridge University Press, New YorkGoogle Scholar
  25. Kikuzawa K, Lechowicz MJ (2011) Ecology of leaf longevity. Springer, New YorkCrossRefGoogle Scholar
  26. Larcher W (2003) Physiological plant ecology, 4th edn. Springer, New YorkCrossRefGoogle Scholar
  27. Lemos Filho JP, Goulart MF, Lovato MB (2008) Populational approach in ecophysiological studies: the case of Plathymenia reticulata, a tree from Cerrado and Atlantic Forest. Braz J Plant Physiol 20:205–216CrossRefGoogle Scholar
  28. Lemos Filho JP, Mendonça Filho CV (2000) Seasonal changes in the water status of three woody legumes from the Atlantic forest, Caratinga. Braz J Trop Ecol 16:21–32CrossRefGoogle Scholar
  29. Martinez-Vilalta J, Poyatos R, Aguad DE, Retana J, Mencuccini M (2014) A new look at water transport regulation in plants. New Phytol 204:105–115CrossRefPubMedGoogle Scholar
  30. McCulloh KA, Johnson DM, Petitmermet J, McNellis B, Meinzer FC, Lachenbruch B (2015) A comparison of hydraulic architecture in three similarly sized woody species differing in their maximum potential height. Tree Physiol 35:723–731CrossRefPubMedGoogle Scholar
  31. Meinzer FC, Johnson DM, Lachenbruch B, McCulloh KA, Woodruff DR (2009) Xylem hydraulic safety margins in woody plants: coordination of stomatal control of xylem tension with hydraulic capacitance. Funct Ecol 23:922–930CrossRefGoogle Scholar
  32. Miranda LAP, Vitória AP, Funch LS (2011) Leaf phenology and water potential of five arboreal species in gallery and montane forests in the Chapada Diamantina; Bahia. Braz Environ Exp Bot 70:143–150CrossRefGoogle Scholar
  33. Moraes ACS (2011) Fenologia, síndromes de polinização e dispersão e potencial hídrico de espécies lenhosas de cerrado, Chapada Diamantina, Bahia, Brasil. Masters Thesis. Universidade Estadual de Feira de Santana, BahiaGoogle Scholar
  34. Murchie EH, Horton P (1997) Acclimation of photosynthesis to irradiance and spectral quality in British plant species: chlorophyll content, photosynthetic capacity and habitat preference. Plant Cell Environ 20:438–448CrossRefGoogle Scholar
  35. Naramoto M, Katahata S, Mukai Y, Kakubari Y (2006) Photosynthetic acclimation and photoinhibition on exposure to high light in shade-developed leaves of Fagus crenata seedlings. Flora 201:120–126CrossRefGoogle Scholar
  36. Neves SPS, Funch R, Conceição AA, Miranda LAP, Funch LS (2016) What are the most important factors determining different vegetation types in the Chapada Diamantina, Brazil. Braz J Biol 76:315–333. doi: 10.1590/1519-6984.13814 CrossRefPubMedGoogle Scholar
  37. Pockman WT, Sperry JS, O’Leary JW (1995) Sustained and significant negative water pressure in xylem. Nature 378:715–716CrossRefGoogle Scholar
  38. Puglielli G, Crescente MF, Frattaroli AR, Gratani L (2015) Leaf mass per area (LMA) as a possible predictor of adaptive strategies in two species of Sesleria (Poaceae): analysis of morphological, anatomical and physiological leaf traits. Ann Bot Fenn 52:135–143CrossRefGoogle Scholar
  39. Reich PB, Uhl C, Walters MB, Ellsworth DS (1991) Leaf lifespan as a determinant of leaf structure and function among 23 tree species in Amazonian forest communities. Oecologia 86:16–24CrossRefPubMedGoogle Scholar
  40. Reich PB (1994) Phenology of tropical forest: patterns, causes, and consequences. Can J Bot 73:141–159Google Scholar
  41. Rodríguez-Garcia E, Bravo F (2013) Plasticity in Pinus pinaster populations of diverse origins: comparative seedling responses to light and Nitrogen availability. For Ecol Manage 307:196–205. doi: 10.1016/j.foreco.2013.06.046 CrossRefGoogle Scholar
  42. Rosado BHP, de Mattos EA (2007) Variação temporal de características morfológicas de folhas em dez espécies do Parque Nacional da Restinga de Jurubatiba, Macaé, RJ, Brasil. Acta Bot Bras 21:741–752CrossRefGoogle Scholar
  43. Rosado BHP, Dias ATC, de Mattos EA (2013) Going back to basics: importance of ecophysiology when choosing functional traits for studying communities and ecosystems. Natureza Conservação 11:15–22CrossRefGoogle Scholar
  44. Rossato DR (2013) Seasonal patterns of leaf production in co-occurring trees with contrasting leaf phenology: L time and quantitative divergences. Plant Species Biol 28:138–145. doi: 10.1111/j.1442-1984.2012.00373.x CrossRefGoogle Scholar
  45. Rossatto DR, Hoffmann WA, Silva LCR, Haridasan M, Sternberg LSL, Franco AC (2013) Seasonal variation in leaf traits between congeneric savanna and forest trees in Central Brazil: implications for forest expansion into savanna. Trees 27:1139–1150CrossRefGoogle Scholar
  46. Sanchez A, Smith WK (2015) No evidence for photoinhibition of photosynthesis in alpine Caltha leptosepala DC. Alp Bot 125:41–50. doi: 10.1007/s00035-015-0146-2 CrossRefGoogle Scholar
  47. Sinclair RT, Zwieniecki MA, Holbrook NM (2008) Low leaf hydraulic conductance associated with drought tolerance in soybean. Physiol Plant 132:446–451. doi: 10.1111/j.1399-3054.2007.01028.x CrossRefPubMedGoogle Scholar
  48. Singh KP, Kushwaha CP (2005) Emerging paradigms of tree phenology in dry tropics. Curr Sci 89:964–975Google Scholar
  49. Schmidhalter U (1997) The gradient between pre-dawn rhizoplane and bulk soil matric potentials, and its relation to the pre-dawn root and leaf water potentials of four species. Plant Cell Environ 20:953–960CrossRefGoogle Scholar
  50. Sobral M, Proença C, Souza M, Mazine F, Lucas E (2013) Myrtaceae. In: Lista de Espécies da Flora do Brasil. Rio de Janeiro: Jardim Botânico do Rio de Janeiro. Disponível em. http://floradobrasil.jbrj.gov.br/jabot/floradobrasil/. Accessed 12 July 2015
  51. Souza GM, Sato AM, Ribeiro RV, Prado CHBA (2010) Photosynthetic responses of four tropical tree species grown under gap and understorey conditions in a semi-deciduous forest. Braz J Bot 33:529–538. doi: 10.1590/S0100-84042010000400002 CrossRefGoogle Scholar
  52. Sperry JS (2000) Hydraulic constraints on plant gas exchange. Agric For Meteorol 104:13–23CrossRefGoogle Scholar
  53. Sultan SE (2000) Phenotypic plasticity for plant development, function and life history. Trends Plant Sci 5:537–542CrossRefPubMedGoogle Scholar
  54. Toledo MM, Paiva EAS, Lovato MB, Lemos Filho JP (2012) Stem radial increment of forest and savanna ecotypes of a Neotropical tree: relationships with climate, phenology, and water potential. Trees 26:1137–1144. doi: 10.1007/s00468-012-0690-y CrossRefGoogle Scholar
  55. Valladares F, Wright SJ, Lasso E, Kitajima K, Pearcy RW (2000) Plastic phenotypic response to light of 16 congeneric shrubs from a Panamanian rainforest. Ecology 81:1925–1936CrossRefGoogle Scholar
  56. Valladares F, Niinemets U (2008) Shade tolerance, a key plant feature of complex nature and consequences. Annu Rev Ecol Evol Syst 39:237–257CrossRefGoogle Scholar
  57. Vieira TO, Degli-Espoti MSO, Souza GM, Rabelo GR, da Cunha M, Vitória AP (2015) Photoacclimation capacity in seedling and sapling of Siparuna guianensis (Siparunaeae): response to irradiance gradient in tropical forest. Photosynthetica 53:11–22. doi: 10.1007/s11099-015-0073-x CrossRefGoogle Scholar
  58. Vitória AP, Vieira TO, Plinio BC, Santiago LS (2016) Using leaf δ13C and photosynthetic parameters to understand acclimation to irradiance and leaf age effects during tropical forest regeneration. For Ecol Manage 379:50–60CrossRefGoogle Scholar
  59. Wellburn AR (1994) The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol 144:307–313CrossRefGoogle Scholar
  60. Witkowski ETF, Lamont BB (1991) Leaf specific mass confounds leaf density and thickness. Oecologia 88:486–493CrossRefPubMedGoogle Scholar
  61. Wortemann R, Herbette S, Barigah TS, Fumanal B, Alia R, Ducousso A, Gomory D, Roeckel-Drevet P, Cochard H (2012) Genotypic variability and phenotypic plasticity of cavitation resistance in Fagus sylvatica L. across Europe. Tree Physiol 31:1175–1182. doi: 10.1093/treephys/tpr101 CrossRefGoogle Scholar
  62. Wright SJ, Cornejo FH (1999) Seasonal drought and leaf fall in a tropical forest. Ecology 71:1165–1175CrossRefGoogle Scholar
  63. Xue Q, Weiss A, Arkebauer TJ, Baenziger SP (2004) Influence of soil water status and atmospheric vapor pressure deficit on leaf gas exchange in field-grown winter wheat. Environ Exp Bot 51:167–179CrossRefGoogle Scholar
  64. Zar JH (2010) Biostatistical analysis, 5th edn. Prentice-Hall, New JerseyGoogle Scholar

Copyright information

© Botanical Society of Sao Paulo 2017

Authors and Affiliations

  • Aline Cristina da Silva Moraes
    • 1
  • Angela Pierre Vitória
    • 2
  • Davi Rodrigo Rossatto
    • 3
  • Lia d’Afonsêca Pedreira de Miranda
    • 4
  • Ligia Silveira Funch
    • 4
  1. 1.Instituto Federal de EducaçãoCiência e Tecnologia da Bahia – Campus IrecêIrecêBrazil
  2. 2.Laboratório de Ciências Ambientais, Centro de Biociência e BiotecnologiaUniversidade Estadual do Norte Fluminense (UENF) “Darcy Ribeiro”Campos dos GoytacazesBrazil
  3. 3.Departamento de Biologia Aplicada a AgropecuáriaUniversidade Estadual Paulista Júlio de Mesquita FilhoJaboticabalBrazil
  4. 4.Departamento de Ciências BiológicasUniversidade Estadual de Feira de SantanaFeira de SantanaBrazil

Personalised recommendations