Advertisement

Brazilian Journal of Botany

, Volume 40, Issue 2, pp 405–415 | Cite as

Abiotic factors drive the structure of aquatic plant assemblages in riverine habitats of the Brazilian “Pantanal”

  • Camila Aoki
  • Mara Cristina Teixeira-Gamarra
  • Roberto Macedo Gamarra
  • Silvana Cristina Hammerer de Medeiros
  • Vali Joana Pott
  • Geraldo Alves Damasceno-Junior
  • Arnildo Pott
  • Edna Scremin-Dias
Original Article

Abstract

The “Pantanal” wetland is one of the largest centers of diversity of aquatic macrophytes of Brazil. The objective of this work was to present a checklist of aquatic macrophytes, and to investigate structure and patterns of occurrence regarding physico-chemical parameters, at Amolar, in the Paraguay River sub-region, in the mid-western “Pantanal” wetland, Corumbá (MS). No previous aquatic plant study has been carried out there so far. The study was conducted in June 2009 in 391 plots (0.5 × 0.5 m). We recorded 65 species of aquatic macrophytes, from 49 genera and 27 families. The richest families were Fabaceae, Poaceae, Convolvulaceae, Onagraceae, and Lentibulariaceae. The most representative life forms were emergent and free floating, comprising the most frequent species: Hymenachne amplexicaulis (Rudge) Nees, Salvinia auriculata Aubl., Ricciocarpos natans (L.) Corda, Lemna aequinoctialis Welw. and Azolla filiculoides Lam. presented the highest relative cover, as well as the highest importance value, followed by S. auriculata. The structure of the community of aquatic macrophytes presents relation with physico-chemical variables, chiefly depth: many species occurred exclusively in shallow areas and others in deep zones. The life forms partially explain the species zonation of macrophytes in relation to depth.

Keywords

Conductivity Dissolved solids pH Phytosociology Wetland 

Notes

Acknowledgements

We thank the Graduate Programs of Plant Biology and of Ecology and Conservation for financial support, to ECOA for logistic support, to the Brazilian agencies for scholarships to C. Aoki (Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq), R. M. Gamarra (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES), and to CAPES and CNPq for grants to A. Pott and E. Scremin-Dias.

References

  1. Agostinho AA, Gomes LC, Pelicice FM (2007) Ecologia e manejo de recursos pesqueiros em reservatórios do Brasil. Eduem, MaringáGoogle Scholar
  2. Anderson R, Kalff J (1988) Submerged aquatic macrophytes biomass in relation to sediment characteristics in ten temperate lakes. Freshw Biol 19:115–121CrossRefGoogle Scholar
  3. Apg III (2009) An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG III. Bot J Linn Soc 161:105–121CrossRefGoogle Scholar
  4. Barko JW, Adams MS, Clesceri NL (1986) Environmental factors and their consideration in the management of submersed aquatic vegetation—a review. J Aquat Plant Manag 24:1–10Google Scholar
  5. Bornette G, Puijalon S (2011) Response of aquatic plants to abiotic factors: a review. Aquat Sci 73:1–14. doi: 10.1007/s00027-010-0162-7 CrossRefGoogle Scholar
  6. Bryson CT, Maddox VL, Carter R (2008) Spread of Cuban Club-Rush (Oxycaryum cubense) in the Southeastern United States. Invasive Plant Sci Manag 1:326–329. doi: 10.1614/IPSM-08-083.1 CrossRefGoogle Scholar
  7. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information theoretic approach, 2nd edn. Springer, New YorkGoogle Scholar
  8. Casatti L, Mendes HF, Ferreira KM (2003) Aquatic macrophytes as feeding site for small fishes in the Rosana Reservoir, Paranapanema River, southeastern Brazil. Braz J Biol 63:213–222CrossRefPubMedGoogle Scholar
  9. Castro CRT, Garcia R (1996) Competição entre plantas com ênfase no recurso luz. Ciênc Rural 26(1):167–174. doi: 10.1590/S0103-84781996000100031 CrossRefGoogle Scholar
  10. Catian G, Leme FM, Francener A, Carvalho FS, Galletti VS, Pott A, Pott VJ, Scremin Dias E, Damasceno Junior GA (2012) Macrophyte structure in lotic-lentic habitats from Brazilian Pantanal. Oecol Aust 16:782–796. doi: 10.4257/oeco.2012.1604.05 CrossRefGoogle Scholar
  11. Colwell RK (2009) EstimateS, Version 8.2: statistical estimation of species richness and shared species from samples (Software and User’s Guide). Freeware for Windows and Mac OS. http://viceroy.eeb.uconn.edu/estimates. Accessed 12 Dec 2010
  12. Cook CDK (1996) Aquatic and wetland plants of India. Oxford University Press, OxfordGoogle Scholar
  13. Csurhes SM, Mackey AP, Fitzsimmons L (1999) Hymenachne (Hymenachne amplexicaulis) in Queensland. Pest status review series—land protection. Department of Natural Resources and Mines, QueenslandGoogle Scholar
  14. Cunha NL, Delatorre M, Rodrigues RB, Vidotto C, Gonçalves F, Scremin-Dias E, Damasceno-Junior GA, Pott VJ, Pott A (2012) Structure of aquatic vegetation of a large lake, western border of the Brazilian Pantanal. Braz J Biol 72(3):519–531. doi: 10.1590/S1519-69842012000300015 CrossRefPubMedGoogle Scholar
  15. Damasceno Junior GA, Pott A (2011) Métodos de amostragem em estudos fitossociológicos sugeridos para o Pantanal. In: Felfiti JM, Eisenlohr PV, Melo MMRF, Andrade LA, Meira-Neto JAA (eds) Fitossociologia no Brasil: Métodos e estudos de caso, vol 1. Editora UFV, ViçosaGoogle Scholar
  16. Damasceno Júnior GA, Semir J, Santos FAM, Leitão-Filho HF (2004) Tree mortality in a riparian forest at Rio Paraguai, Pantanal, Brazil, after an extreme flooding. Acta Bot Bras 18:839–846. doi: 10.1590/S0102-33062004000400014 CrossRefGoogle Scholar
  17. Ferreira FA, Mormul RP, Thomaz SM, Pott A, Pott VJ (2011) Macrophytes in the upper Paraná river floodplain: checklist and comparison with other large South American wetlands. Rev Biol Trop 59:541–556PubMedGoogle Scholar
  18. Forzza RB, Leitman PM, Costa AF, Carvalho AA Jr, Peixoto AL, Walter BMT, Bicudo C, Zappi D, Costa DP, Lleras E, Martinelli G, Lima HC, Prado J, Stehmann JR, Baumgratz JFA, Pirani JR, Sylvestre L, Maia LC, Lohmann LG, Queiroz LP, Silveira M, Coelho MN, Mamede MC, Bastos MNC, Morim MP, Barbosa MR, Menezes M, Hopkins M, Secco R, Cavalcanti TB, Souza VC (2010) Catálogo de Plantas e Fungos do Brasil. Instituto de Pesquisas Jardim Botânico do Rio de Janeiro/Andréa Jakobsson Estúdio, Rio de JaneiroCrossRefGoogle Scholar
  19. Gopal B, Sharma KP (1981) Water-hyacinth (Eichhornia crassipes), most troublesome weed of the world. Hindasia Publications, DelhiGoogle Scholar
  20. Gross EM, Johnson RL, Hairston NG Jr (2001) Experimental evidence for changes in submersed macrophyte species composition caused by the herbivore Acentria ephemerella (Lepidoptera). Oecologia 127:105–114. doi: 10.1007/s004420000568 CrossRefPubMedGoogle Scholar
  21. INPE—Instituto Nacional de Pesquisas Espaciais (2009) Imagem do satélite LANDSAT 5, sensor TM, canais 1, 2, 3, 4, 5 e 7, órbita/ponto: 227/072 de 12/07/2009. São José dos Campos, São PauloGoogle Scholar
  22. Irgang BE, Pedralli G, Waechter JI (1984) Macrófitos aquáticos da Estação Ecológica do Taim, Rio Grande do Sul, Brasil. Roessleria 6:395–404Google Scholar
  23. Johnson J, Omland K (2004) Model selection in ecology and evolution. Trends Ecol Evol 19:101–108CrossRefPubMedGoogle Scholar
  24. Junk, WJ, Piedade, MTF (1993) Biomass and primary production of herbaceous plants communities in the Amazon floodplain. Hydrobiologia 263:155–162CrossRefGoogle Scholar
  25. Lehmann A, Castella E, Lachavanne JB (1997) Morphological traits and spatial heterogeneity of aquatic plants along sediment and depth gradients, Lake Geneva, Switzerland. Aquat Bot 55:281–299CrossRefGoogle Scholar
  26. Madsen VD, Chambers PA, James WF, Koch EW, Westlake DF (2001) The interaction between water movement, sediment dynamics and submersed macrophytes. Hydrobiologia 444:71–84. doi: 10.1023/A:1017520800568 CrossRefGoogle Scholar
  27. Marion L, Paillisson JM (2002) A mass balance assessment of the contribution of floating-leaved macrophytes in nutrient stocks in an eutrophic macrophyte-dominated lake. Aquat Bot 75:249–260. doi: 10.1016/s0304-3770(02)00177-8 CrossRefGoogle Scholar
  28. Martín J, Luque-Larena JJ, López P (2005) Factors affecting escape behavior of Iberian green frogs (Rana perezi). Can J Zool 83:1189–1195. doi: 10.1139/z05-114 CrossRefGoogle Scholar
  29. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2016) Package ‘vegan’. https://cran.r-project.org/web/packages/vegan/vegan.pdf. Accessed 06 Aug 2016
  30. Padial AA, Bini LM, Thomaz SM (2008) The study of aquatic macrophytes in Neotropics: a scientometrical view of the main trends and gaps. Braz J Biol 68:1051–1059. doi: 10.1590/S1519-69842008000500012 CrossRefPubMedGoogle Scholar
  31. Pedralli G (1992) Macrófitos aquáticos: centro de diversidade. Ciênc Hoje 14:56–57Google Scholar
  32. Pedralli G, Irgang BE, Pereira CP (1985) Macrófitos aquáticos do Município de Rio Grande, Rio Grande do Sul, Brasil. Revista AGROS 20:45–52Google Scholar
  33. Pelicice FM, Agostinho AA (2006) Feeding ecology of fishes associated with Egeria spp. patches in a tropical reservoir Brazil. Ecol Freshw Fish 15:10–19. doi: 10.1111/j.1600-0633.2005.00121.x CrossRefGoogle Scholar
  34. Pereira AS, Trindade CRT, Albertoni EF, Palma-Silva C (2012) Aquatic macrophytes as indicators of water quality in subtropical shallow lakes Southern Brazil. Acta Limnol Bras 24:52–63CrossRefGoogle Scholar
  35. Pivari MO, Pott VJ, Pott A (2008) Macrófitas aquáticas de ilhas flutuantes (baceiros) nas sub-regiões do Abobral e Miranda, Pantanal, MS, Brasil. Acta Bot Bras 22:563–571. doi: 10.1590/S0102-33062008000200023 CrossRefGoogle Scholar
  36. Pott VJ, Pott A (2000) Plantas aquáticas do Pantanal. EMBRAPA, CorumbáGoogle Scholar
  37. Pott VJ, Pott A (2003) Dinâmica da vegetação aquática do Pantanal. In: Thomaz SM, Bini LM (eds) Ecologia e manejo de macrófitas aquáticas. Editora da Universidade Estadual de Maringá, Maringá, pp 145–162Google Scholar
  38. Pott VJ, Bueno NC, Pereira RAC, Salis SM, Viera NL (1989) Distribuição de macrófitas aquáticas numa lagoa na Fazenda Nhumirim, Nhecolândia, Pantanal, MS. Acta Bot Bras 3:153–168. doi: 10.1590/S0102-33061989000300015 CrossRefGoogle Scholar
  39. Pott VJ, Pott A, Lima LCP, Moreira SN, Oliveira AKM (2011) Aquatic macrophyte diversity of the Pantanal wetland and upper basin. Braz J Biol 71:255–263CrossRefPubMedGoogle Scholar
  40. Pott VJ, Ferreira FA, Arantes ACV, Pott A (2012) How many species of aquatic macrophytes are there in the Brazilian Pantanal wetland? An updated checklist. Anais do 1o Congresso Brasileiro de Áreas Úmidas (I CONBRAU), CuiabáGoogle Scholar
  41. Pressey RL, Adam P (1995) A review of wetland inventory and classification in Australia. Classification and Inventory of the World’s Wetlands, Advances in Vegetation Science, vol 16. Kluwer Academic Publishers, DordrechtGoogle Scholar
  42. Pulido C, Riera JL, Ballesteros E, Chappuis E, Gacia E (2015) Predicting aquatic macrophyte occurrence in soft-water oligotrophic lakes (Pyrenees mountain range). J Limnol 74:143–154. doi: 10.4081/jlimnol.2014.965 Google Scholar
  43. R Development Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org. Accessed 04 July 2014
  44. Rocha CG, Resende UM, Lugnani JS (2007) Diversidade de macrófitas em Ambientes aquáticos do IPPAN na Fazenda Santa Emília, Aquidauana, MS. Rev Bras Biociênc 5:456–458Google Scholar
  45. Schwarz AM, Hawes I (1997) Effects of changing water clarity on characean biomass and species composition in a large oligotrophic lake. Aquat Bot 56:169–181CrossRefGoogle Scholar
  46. Silva JSV, Abdon MM (1998) Delimitação do Pantanal brasileiro e suas sub-regiões. EMBRAPA 33:1703–1711Google Scholar
  47. Silva RMM, Carniello MA (2007) Ocorrência de macrófitas em lagoas intermitentes e permanentes em Porto Limão, Cáceres-MT. Rev Bras Bioc 5:519–521Google Scholar
  48. Soares MTS, Soriano BMA, Abreu UGP, Santos S.A (2010) Monitoramento do comportamento do Rio Paraguai na região de Corumbá, Pantanal Sul-Mato-Grossense, 2009–2010. Embrapa Pantanal Comunicado Técnico 85. http://www.cpap.embrapa.br/publicacoes/online/COT85.pdf. Accessed 10 Aug 2010
  49. Soriano BMA (1997) Caracterização climática de Corumbá, MS Embrapa. Boletim de Pesquisa, CorumbáGoogle Scholar
  50. Spence DHN, Maberly SC (1985) Occurrence and ecological importance of HCO3 use among aquatic higher plants. In: Lucas WJ, Berry JA (eds) Inorganic carbon uptake by aquatic photosynthetic organism. The American Society of Plant Physiologists, MarylandGoogle Scholar
  51. Tanaka RH, Cardoso LR, Martins D, Marcondes DAS, Mustafá AL (2002) Ocorrência de plantas aquáticas nos reservatórios da Companhia Energética de São Paulo. Planta Daninha 20:101–111. doi: 10.1590/S0100-83582002000400012 CrossRefGoogle Scholar
  52. Thomaz SM, Cunha ER (2010) The role of macrophytes in habitat structuring in aquatic ecosystems: methods of measurement, causes and consequences on animal assemblages’ composition and biodiversity. Acta Limnol Bras 22:218–236CrossRefGoogle Scholar
  53. Vermaat JE, Santamaria L, Roos PJ (2000) Water flow across and sediment trapping in submerged macrophyte beds of contrasting growth form. Arch Hydrobiol 148:549–562CrossRefGoogle Scholar
  54. Vestergaard O, Sand-Jensen K (2000) Alkalinity and trophic state regulate aquatic plant distribution in Danish lakes. Aquat Bot 67:85–107. doi: 10.1016/S0304-3770(00)00086-3 CrossRefGoogle Scholar

Copyright information

© Botanical Society of Sao Paulo 2017

Authors and Affiliations

  • Camila Aoki
    • 1
    • 3
  • Mara Cristina Teixeira-Gamarra
    • 2
  • Roberto Macedo Gamarra
    • 3
  • Silvana Cristina Hammerer de Medeiros
    • 4
  • Vali Joana Pott
    • 4
  • Geraldo Alves Damasceno-Junior
    • 4
  • Arnildo Pott
    • 4
  • Edna Scremin-Dias
    • 4
  1. 1.Universidade Federal de Mato Grosso do SulAquidauanaBrazil
  2. 2.Universidade Federal de Mato Grosso do SulCampo GrandeBrazil
  3. 3.Programa de Pós Graduação em Recursos NaturaisUniversidade Federal de Mato Grosso do SulCampo GrandeBrazil
  4. 4.Programa de Pós Graduação em Biologia VegetalUniversidade Federal de Mato Grosso do SulCampo GrandeBrazil

Personalised recommendations