Advertisement

Brazilian Journal of Botany

, Volume 40, Issue 2, pp 463–473 | Cite as

Polymorphism of microsatellite markers in barley varieties contrasting in response to drought stress

  • Sawsen Drine
  • Ferdaous Guasmi
  • Hayet Bacha
  • Raoudha Abdellaoui
  • Ali Ferchichi
Original Article
  • 99 Downloads

Abstract

Drought is one of the most serious abiotic stresses limiting plant growth and crop productivity worldwide. The long arm of the barley chromosome 4H is often implicated in adaptation to drought. Therefore, the aim of the present study was to explore the polymorphism of microsatellite markers localized mostly on chromosome 4H in eight barley varieties (Hordeum vulgare L.) representing the wide range of drought tolerance. The differences in physiological responses related to drought stress classified these genotypes in two groups based on the Euclidean distances. The susceptible varieties are gathered in the same cluster recording an average Euclidean distance of 27.2, and an average dissimilarity of approximately 52.4 regarding the drought-tolerant group. Tolerance to drought stress of the Tunisian and Jordanian barley cultivars was associated with lower changing ratios of malondialdehyde contents, smaller decrease in leaf water content and significant increase in proline concentration compared to other analyzed genotypes. In simple sequence repeat (SSR) analyses, from a total of 17 analyzed SSR primers, 12 microsatellites showed clear patterns with high level of polymorphism. Among the 12 polymorphic SSR primers, four were found to be polymorphic across drought susceptible and drought-tolerant cultivars (Bmag808, EBMAC624, WMS6 and BMAC0577). High level of diversity was observed in the chosen genotypes through analyzing both physiological traits and SSR markers. A significant correlation was observed between the distance matrices based on SSR markers and physiological data, as determined by the Pearson’s correlation coefficient (r  =  0.63; Mantel test P  <  0.05).

Keywords

Drought tolerance Genetic diversity Hordeum vulgare L. Malondialdehyde Proline Relative water content Simple sequence repeat marker 

Notes

Acknowledgements

We gratefully thank all the technical staff of the Arid Regions Institute-Medenine (IRA) for their help to conducting these experiments. The authors are also grateful to the Editor in Chief Pr. Orlando Necchi Jr, the Assistant Editor Prof. Zivko Jovanovic and to two anonymous referees for their critical reading and revision of the original manuscript. Their valuable comments contributed to improve the presentation of our work.

References

  1. Abdellaoui R, Cheikh Mohamed H, Ben Naceur M, Rahmoune C, Bettaib-Kaab L, Ben Hmida J (2007) Simple sequence repeat markers and physiological characterization of some local Tunisian barley accessions. J Cell Mol Biol 6:19–29Google Scholar
  2. Ahmed IM, Dai H, Zheng W, Cao F, Zhang G, Sun D, Wu F (2013) Genotypic differences in physiological characteristics in the tolerance to drought and salinity combined stress between Tibetan wild and cultivated barley. Plant Physiol Biochem 63:49–60. doi: 10.1016/j.plaphy.2012.11.004 CrossRefPubMedGoogle Scholar
  3. Bandurska H (2001) Does proline accumulated in leaves of water deficit stressed barley plants confine cell membrane injuries? II. Proline accumulation during hardening and its involvement in reducing membrane injuries in leaves subjected to severe osmotic stress. Acta Physiol Plant 23:483–490. doi: 10.1007/s11738-001-0059-0 CrossRefGoogle Scholar
  4. Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207. doi: 10.1007/bf00018060 CrossRefGoogle Scholar
  5. Budak H, Hussain B, Khan Z, Ozturk NZ, Ullah N (2015) From genetics to functional genomics: improvement in drought signaling and tolerance in wheat. Front Plant Sci 6:1012. doi: 10.3389/fpls.2015.01012 CrossRefPubMedPubMedCentralGoogle Scholar
  6. de Mezer M, Turska-Taraska A, Kaczmarek Z, Glowacka K, Swarcewicz B, Rorat T (2014) Differential physiological and molecular response of barley genotypes to water deficit. Plant Physiol Biochem 80:234–248. doi: 10.1016/j.plaphy.2014.03.025 CrossRefPubMedGoogle Scholar
  7. Du J-B, Yuan S, Chen Y-E, Sun X, Zhang Z-W, Xu F, Yuan M, Shang J, Lin H-H (2010) Comparative expression analysis of dehydrins between two barley varieties, wild barley and Tibetan hulless barley associated with different stress resistance. Acta Physiol Plant 33:567–574. doi: 10.1007/s11738-010-0580-0 CrossRefGoogle Scholar
  8. Edwards K, Johnstone C, Thompson C (1991) A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Res 19:13–49Google Scholar
  9. Evers D et al (2010) Identification of drought-responsive compounds in potato through a combined transcriptomic and targeted metabolite approach. J Exp Bot 61:2327–2343. doi: 10.1093/jxb/erq060 CrossRefPubMedGoogle Scholar
  10. Hameed A, Bibi N, Akhter J, Iqbal N (2011) Differential changes in antioxidants, proteases, and lipid peroxidation in flag leaves of wheat genotypes under different levels of water deficit conditions. Plant Physiol Biochem 49:178–185. doi: 10.1016/j.plaphy.2010.11.009 CrossRefPubMedGoogle Scholar
  11. Hamza S, Ben Hamida W, Rebaï A, Harrabi M (2004) SSR-based genetic diversity assessment among Tunisian winter barley and relationship with morphological traits. Euphytica 135:107–118. doi: 10.1023/B:EUPH.0000009547.65808.bf CrossRefGoogle Scholar
  12. Handley L, Nevo E, Raven JA, Martinez CR, Scrimgeour CM, Pakniyat H, Forster BP (1994) Chromosome 4 controls potential water use efficiency in barley. Oxford University Press, ROYAUME-UNI, OxfordGoogle Scholar
  13. Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. Arch Biochem Biophys 125:189–198. doi: 10.1016/0003-9861(68)90654-1 CrossRefPubMedGoogle Scholar
  14. Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Calif Agric Exp Stn Circ 347:1–32Google Scholar
  15. Jackson P, Robertson M, Cooper M, Hammer G (1996) The role of physiological understanding in plant breeding; from a breeding perspective. Field Crops Res 49:11–37. doi: 10.1016/S0378-4290(96)01012-X CrossRefGoogle Scholar
  16. Kolodinska Brantestam A, Bothmer R, Dayteg C, Rashal I, Tuvesson S, Weibull J (2007) Genetic diversity changes and relationships in spring barley (Hordeum vulgare L.) germplasm of Nordic and Baltic areas as shown by SSR markers. Genet Resour Crop Evol 54:749–758. doi: 10.1007/s10722-006-9159-4 CrossRefGoogle Scholar
  17. Kosová K, Vítámvás P, Prášil IT (2014) Proteomics of stress responses in wheat and barley-search for potential protein markers of stress tolerance. Front Plant Sci 5:711. doi: 10.3389/fpls.2014.00711 PubMedPubMedCentralGoogle Scholar
  18. Lakew B, Henry RJ, Ceccarelli S, Grando S, Eglinton J, Baum M (2012) Genetic analysis and phenotypic associations for drought tolerance in Hordeum spontaneum introgression lines using SSR and SNP markers. Euphytica 189:9–29. doi: 10.1007/s10681-012-0674-4 CrossRefGoogle Scholar
  19. Leisova L, Kucera L, DotlaciL L (2007) Genetic resources of barley and oat characterised by microsatellites. Czech J Genet Plant Breed 43:97–104Google Scholar
  20. Ma X, Li C, Wang A, Duan R, Jiao G, Nevo E, Chen G (2012) Genetic diversity of wild barley (Hordeum vulgare ssp. spontaneum) and its utilization for barley improvement. Sci Cold Arid Reg 4:0453–0461CrossRefGoogle Scholar
  21. Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220PubMedGoogle Scholar
  22. Marcińska I et al (2013) Impact of osmotic stress on physiological and biochemical characteristics in drought-susceptible and drought-resistant wheat genotypes. Acta Physiol Plant 35:451–461. doi: 10.1007/s11738-012-1088-6 CrossRefGoogle Scholar
  23. Maroof MA, Biyashev R, Zhang Q (1995) Comparison of restriction fragment length polymorphisms in wild and cultivated barley. Genome 38:298–306. doi: 10.1139/g95-037 CrossRefPubMedGoogle Scholar
  24. Matus IA, Hayes PM (2002) Genetic diversity in three groups of barley germplasm assessed by simple sequence repeats. Genome 45:1095–1106. doi: 10.1139/g02-071 CrossRefPubMedGoogle Scholar
  25. Mayer KF et al (2012) A physical, genetic and functional sequence assembly of the barley genome. Nature 491:711–716. doi: 10.1038/nature11543 PubMedGoogle Scholar
  26. Mikolajczak K et al (2016) Quantitative trait loci for yield and yield-related traits in spring barley populations derived from crosses between European and Syrian cultivars. PLoS ONE 11:e0155938. doi: 10.1371/journal.pone.0155938 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Miller GAD, Suzuki N, Ciftci-Yilmaz S, Mittler RON (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant, Cell Environ 33:453–467. doi: 10.1111/j.1365-3040.2009.02041.x CrossRefGoogle Scholar
  28. Molnár I, Linc G, Dulai S, Nagy ED, Molnár-Láng M (2007) Ability of chromosome 4H to compensate for 4D in response to drought stress in a newly developed and identified wheat–barley 4H(4D) disomic substitution line. Plant Breed 126:369–374. doi: 10.1111/j.1439-0523.2007.01300.x CrossRefGoogle Scholar
  29. Nagy S, Poczai P, Cernak I, Gorji AM, Hegedus G, Taller J (2012) PICcalc: an online program to calculate polymorphic information content for molecular genetic studies. Biochem Genet 50:670–672. doi: 10.1007/s10528-012-9509-1 CrossRefPubMedGoogle Scholar
  30. Pandey M, Wagner C, Friedt W, Ordon F (2006) Genetic relatedness and population differentiation of Himalayan hulless barley (Hordeum vulgare L.) landraces inferred with SSRs. Theor Appl Genet 113:715–729. doi: 10.1007/s00122-006-0340-0 CrossRefPubMedGoogle Scholar
  31. Perrier X, Jacquemoud JP (2006) DARwin software. http://darwin.cirad.fr/darwin
  32. Perrier X, Flori A, Bonnot F (2003) Data analysis methods. In: Hamon P, Seguin M, Perrier X, Glaszmann JC (eds) Genetic diversity of cultivated tropical plants. Enfield Science Publishers, Montpellier, pp 43–76Google Scholar
  33. Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey SV, Rafalski A (1996) The comparison of RFLP, RAPD, AFLP and SSR markers for germplasm analysis. Mol Breed 2(3):225–238. doi: 10.1007/BF00564200 CrossRefGoogle Scholar
  34. Ramsay L et al (2000) A simple sequence repeat-based linkage map of barley. Genetics 156:1997–2005PubMedPubMedCentralGoogle Scholar
  35. Rostoks N et al (2005) Genome-wide SNP discovery and linkage analysis in barley based on genes responsive to abiotic stress. Mol Genet Genomics 274:515–527. doi: 10.1007/s00438-005-0046-z CrossRefPubMedGoogle Scholar
  36. Sharma S, Verslues PE (2010) Mechanisms independent of abscisic acid (ABA) or proline feedback have a predominant role in transcriptional regulation of proline metabolism during low water potential and stress recovery. Plant, Cell Environ 33:1838–1851. doi: 10.1111/j.1365-3040.2010.02188.x CrossRefGoogle Scholar
  37. Sharma KD, Kumar A, Verma SR (2016) Variations in physiological traits as screening tool for drought tolerance in barley (Hordeum vulgare L.). Indian J Plant Physiol 21:93–100. doi: 10.1007/s40502-016-0207-6 CrossRefGoogle Scholar
  38. Smart RE, Bingham GE (1974) Rapid estimates of relative water content. Plant Physiol 53:258–260. doi: 10.1104/pp.53.2.258 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Soleimani VD, Baum BR, Johnson DA (2006) Analysis of genetic diversity in barley cultivars reveals incongruence between S-SAP, SNP and pedigree data. Genet Resour Crop Evol 54:83–97. doi: 10.1007/s10722-005-1886-4 CrossRefGoogle Scholar
  40. Szabados L, Savouré A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97. doi: 10.1016/j.tplants.2009.11.009 CrossRefPubMedGoogle Scholar
  41. Teulat B, Zoumarou-Wallis N, Rotter B, Ben Salem M, Bahri H, This D (2003) QTL for relative water content in field-grown barley and their stability across Mediterranean environments. Theor Appl Genet 108:181–188. doi: 10.1007/s00122-003-1417-7 CrossRefPubMedGoogle Scholar
  42. Thameur A, Ferchichi A, López-Carbonell M (2011) Quantification of free and conjugated abscisic acid in five genotypes of barley (Hordeum vulgare L.) under water stress conditions. S Afr J Bot 77:222–228. doi: 10.1016/j.sajb.2010.08.004 CrossRefGoogle Scholar
  43. Turpeinen T, Vanhala T, Nevo E, Nissila E (2003) AFLP genetic polymorphism in wild barley (Hordeum spontaneum) populations in Israel. Theor Appl Genet 106:1333–1339. doi: 10.1007/s00122-002-1151-6 CrossRefPubMedGoogle Scholar
  44. Varshney RK et al (2007) A high density barley microsatellite consensus map with 775 SSR loci. Theor Appl Genet 114:1091–1103. doi: 10.1007/s00122-007-0503-7 CrossRefPubMedGoogle Scholar
  45. Varshney RK, Baum M, Guo P, Grando S, Ceccarelli S, Graner A (2010) Features of SNP and SSR diversity in a set of ICARDA barley germplasm collection. Mol Breed 26:229–242. doi: 10.1007/s11032-009-9373-9 CrossRefGoogle Scholar
  46. von Korff M, Grando S, Del Greco A, This D, Baum M, Ceccarelli S (2008) Quantitative trait loci associated with adaptation to Mediterranean dryland conditions in barley. Theor Appl Genet 117:653–669. doi: 10.1007/s00122-008-0787-2 CrossRefGoogle Scholar
  47. Walia H, Wilson C, Condamine P, Ismail A, Xu J, Cui X, Close T (2007) Array-based genotyping and expression analysis of barley cv. Maythorpe and Golden Promise. BMC Genom 8:1–14. doi: 10.1186/1471-2164-8-87 CrossRefGoogle Scholar
  48. Wang J, Yang J, Zhu J, Jia Q, Tao Y (2010) Assessment of genetic diversity by simple sequence repeat markers among forty elite varieties in the germplasm for malting barley breeding. J Zhejiang Univ Sci B 11:792–800. doi: 10.1631/jzus.B0900414 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Wójcik-Jagła M, Rapacz M, Tyrka M, Kościelniak J, Crissy K, Żmuda K (2013) Comparative QTL analysis of early short-time drought tolerance in Polish fodder and malting spring barleys. Theor Appl Genet 126:3021–3034. doi: 10.1007/s00122-013-2190-x CrossRefPubMedPubMedCentralGoogle Scholar
  50. Yu Z, Li-Qiong L, Huan L, Jie B, Man-Ye Y, Chen M, Ying-Fan C, Xiao-Lin Q, Fang C (2012) RAPD markers in diversity detection and variety identification of Tibetan hulless barley. Plant Mol Biol Rep 20:369–377. doi: 10.1007/bf02772124 CrossRefGoogle Scholar

Copyright information

© Botanical Society of Sao Paulo 2016

Authors and Affiliations

  • Sawsen Drine
    • 1
  • Ferdaous Guasmi
    • 1
  • Hayet Bacha
    • 1
  • Raoudha Abdellaoui
    • 1
  • Ali Ferchichi
    • 2
  1. 1.Institute of Arid RegionsMedenineTunisia
  2. 2.National Agronomic Institute of TunisiaTunisTunisia

Personalised recommendations