Brazilian Journal of Botany

, Volume 40, Issue 1, pp 115–124 | Cite as

Composition, diversity, and structure of tidal “Várzea” and “Igapó” floodplain forests in eastern Amazonia, Brazil

  • Marcelo de Jesus Veiga Carim
  • Florian Karl Wittmann
  • Maria Teresa Fernandez Piedade
  • José Renan da Silva Guimarães
  • Luciedi de Cássia Leôncio Tostes
Original Article


The objective of this study was to evaluate the composition, diversity, and structure of tidal “Várzea” and “Igapó” forests in eastern Amazonia, Amapá, Brazil. All live tree individuals with diameter at breast height (dbh) ≥10 cm were registered. A total of 130 plots measuring 10 × 100 m were inventoried, distributed among 13 ha in each of the two forest typologies. A total of 10,575 trees were reported, belonging to 343 species, 172 genera, and 49 families. For all 26 ha sampled, mean tree density was 406 ± 61.27 trees ha−1 and mean basal area was 27.2 ± 11.13 m2 ha−1. Fabaceae, Arecaceae, Malvaceae, Meliaceae, and Rubiaceae were the most important families in tidal “Várzea”, together accounting for 74.76 % of the family importance value index (FIVI %). In “Igapó”, the most important families were Lecythidaceae, Euphorbiaceae, Malvaceae, and Arecaceae, which together accounted for 57.05 % of the family important value index (FIVI %). Smaller diameter trees measuring between 10 and 30 cm dbh dominated the landscape, accounting for 75.52 % of all individuals sampled. In general, 80 % (8285) individuals were under 24 m in height, while only 1.32 % of trees (140) reached heights above 34 m. There was evidence for statistically significant mean differences among tidal “Várzea” and “Igapó” with regard to the number of individuals, species, diversity, and tree height. However, no mean differences were detected for equitability, dbh, dominance, and basal area. Compositional patterns showed low similarity between the evaluated areas, indicating the existence of phytogeographic pattern based on species distribution.


Dominance Phytosociology Similarity Species distribution 



We thank the Institute of Scientific and Technological Research of Amapá (IEPA) for logistical support and the Fundação de Amparo à Pesquisa do Estado do Amapá for financial support. We thank Embrapa Amapá for macronutrient analyses, the National Research Institute of the Amazon (INPA), and the Botany post-graduate course at INPA for providing facilities and the opportunity to conduct the research. MJVC was supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).


  1. Almeida AF, Jardim MAG (2011) Florística e estrutura da comunidade arbórea de uma floresta de Várzea na Ilha de Sororoca, Ananindeua, Pará, Brasil. Sci For 39:191–198Google Scholar
  2. Almeida SS, Amaral DD, Silva AS (2004) Análise florística e estrutura de florestas de Várzea no estuário amazônico. Acta Amazônica 34:513–524. doi: 10.1590/S0044-59672004000400005 CrossRefGoogle Scholar
  3. Angiosperm Phylogeny Group–APG (2009) An update of the Angiosperm phylogeny group classification for the orders and families of flowering plants: APG III. Bot J Linn Soc 161:105–121. doi: 10.1111/j.1095-8339.2009.00996.x CrossRefGoogle Scholar
  4. Carim MJV, Jardim MAG, Medeiros TDS (2008) Composição florística e estrutura de floresta de Várzea no município de Mazagão, Estado do Amapá, Brasil. Sci For 36:191–201Google Scholar
  5. Carim MJV, Abdon LM, Guimarães JRS, Tostes LCL (2014) Análise estrutural de açaizais nativos (Euterpe Oleracea Mart.) em floresta de Várzea, Amapá, Brasil. Biota Amazônia 4:45–51. doi: 10.18561/2179-5746/biotaamazonia.v4n4p45-51 CrossRefGoogle Scholar
  6. Carim MJV, Guimarães JRS, Tostes LCL, Takiyama LR, Wittmann F (2015) Composition, structure and floristic diversity in dense rain forest in the Eastern Amazon, Amapá, Brazil. Acta Sci 37:419–426. doi: 10.4025/actascibiolsci.v37i4.27536 CrossRefGoogle Scholar
  7. Ferreira LV, Parolin P (2011) Effects of flooding duration on plant demography in a black-water floodplain forest in central Amazonia. Pesqui Bot 62:323–332Google Scholar
  8. Ferreira LV, Almeida SS, Parolin P (2010) Amazonian white-and black-water floodplain forests in Brazil: large differences on a small scale. Ecotropica 16:31–41Google Scholar
  9. Ferreira LV, Parolin P, Cunha DA, Chaves PP, Leal D (2013) Variação da riqueza e composição de espécies da comunidade de plantas entre as florestas de Igapós e Várzeas da Estação Científica Ferreira Penna-Caxiuanã na Amazônia Oriental. Pesqui Bot 64:175–195Google Scholar
  10. Fine LV, Miller ZJ, Mesones I, Irazuzta S, Appel HM, Stevens MHH, Sääksjärvi I, Schultz JC, Coley PD (2006) The growth-defense trade-off and habitat specialization by plants in Amazonian forests. Ecology 87:S150–S162. doi: 10.1890/0012-9658(2006)87 CrossRefPubMedGoogle Scholar
  11. Fisher RA, Corbet AS, Willians CB (1943) The relation between the number of species and the number of individuals in a random sample of an animal population. J Anim Ecol 1:42–58. doi: 10.2307/1411 CrossRefGoogle Scholar
  12. Gama JR, Souza AL, Martins SV, Souza DR (2005) Comparação entre florestas de Várzea e de terra firme do Estado do Pará. Rev Árvore 29:607–616. doi: 10.1590/S0100-67622005000400013 Google Scholar
  13. Hammer O, Harper DAT, Ryan PD (2001) Palaetolongical statistics software package for education and data analysis. Palaetolongica Electron 4:1–9Google Scholar
  14. Haugaasen T, Peres CA (2006) Floristic, edaphic and structural characteristics of flooded and unflooded forests in the lower Rio Purús region of central Amazonia, Brazil. Acta Amaz 36:25–36. doi: 10.1590/S0044-59672006000100005 CrossRefGoogle Scholar
  15. Junk WL, Bayley PB, Sparks RE (1989) The flood pulse concept in river-floodplain systems. Canadian Special Publication of Fisheries and Aquatic Sciences. In: Dodge DP (ed) Proceedings of the International Large River Symposium. Can Spec Publ Fish Aquat Sci. 106:110–127Google Scholar
  16. Melack JM, Hess LL (2010) Remote sensing of the distribution and extent of wetlands in the Amazon basin. Amaz Floodplain For 210:43–59. doi: 10.1007/978-90-481-8725-6_3 CrossRefGoogle Scholar
  17. Parolin P, Wittmann F, Schongart J (2010) Tree phenology in Amazonian floodplain forests. Amaz Floodplain For 210:105–126. doi: 10.1007/978-90-481-8725-6_5 CrossRefGoogle Scholar
  18. Queiroz JAL, Machado AS (2008) Fitossociologia em floresta de Várzea do estuário amazônico no estado do Amapá. Pesqui Florest Bras 57:5–20Google Scholar
  19. Santos GC, Jardim MAG (2006) Florística e estrutura do estrato arbóreo de uma floresta de Várzea no município de Santa Bárbara do Pará, Brasil. Acta Amaz 36:437–446. doi: 10.1590/S0044-59672006000400006 CrossRefGoogle Scholar
  20. Targhetta N, Kesselmeier J, Wittmann F (2015) Effects of the hydroedaphic gradient on tree species composition and aboveground wood biomass of oligotrophic forest ecosystems in the central Amazon basin. Folia Geobot 50:185–205. doi: 10.1007/s12224-015-9225-9 CrossRefGoogle Scholar
  21. ter Steege H, Sabatier S, Castellanos H, Van Andel T, Duivenvoorden J, Oliveira AA, Ek RC, Lilwah R, Maas PJM, Mori SA (2000) An analysis of Amazonian floristic composition, including those of the Guiana Shield. J Trop Ecol 16:801–828. doi: 10.1017/S0266467400001735 CrossRefGoogle Scholar
  22. ter Steege H et al (2013) Hyperdominance in the Amazonian Tree Flora. Science 342:6156. doi: 10.1126/science.1243092 Google Scholar
  23. Vásquez MP, Rabelo FG (1999) Sustainable management of na Amazonian Forest for timber production: a myth or reality? Plec News Views 12:20–28. doi: 10.3362/9781780441092.017 Google Scholar
  24. Wittmann F, Junk WJ (2003) Sapling communities in Amazonian white-water forests. J Biogeogr 30:1533–1544. doi: 10.1046/j.1365-2699.2003.00966.x CrossRefGoogle Scholar
  25. Wittmann F, Parolin P (2005) Aboveground roots in Amazonian floodplain trees. Biotropica 37:609–619. doi: 10.1111/j.1744-7429.2005.00078.x CrossRefGoogle Scholar
  26. Wittmann F, Anhuf D, Junk WJ (2002) Tree species distribution and community structure of Central Amazonian Várzea forests by remote sensing techniques. J Trop Ecol 18:805–820. doi: 10.1017/S0266467402002523 CrossRefGoogle Scholar
  27. Wittmann F, Junk WJ, Piedade MTF (2004) The Várzea forests in Amazonia: flooding and the highly dynamic geomorphology interact with natural forest succession. For Ecol Manag 196:199–212. doi: 10.1016/j.foreco.2004.02.060 CrossRefGoogle Scholar
  28. Wittmann F, Schöngart J, Montero JC, Motzer T, Junk WJ, Piedade MTF, Queiroz H, Worbes M (2006) Tree species composition and diversity gradients in white-water forests across the Amazon Basin. J Biogeogr 33:1334–1347. doi: 10.1111/j.1365-2699.2006.01495.x CrossRefGoogle Scholar
  29. Wittmann F, Schöngart J, Junk WJ (2010) Phytogeography, species diversity, community structure and dynamics of Central Amazonian floodplain forests. Amaz Floodplain For 210:61–102. doi: 10.1007/978-90-481-8725-6_4 CrossRefGoogle Scholar
  30. Wittmann F, Householder E, Piedade MTF, Assis RL, Schöngart J, Parolin P, Jun WJ (2013) Habitat specifity, endemism and the neotropical distribution of Amazonian white-water floodplain trees. Ecography 36:690–707. doi: 10.1111/j.1600-0587.2012.07723.x CrossRefGoogle Scholar
  31. Zar JH (2010) Biostatistical analysis, 5th edn. Prentice-Hall, Upsaddler RoadGoogle Scholar

Copyright information

© Botanical Society of Sao Paulo 2016

Authors and Affiliations

  • Marcelo de Jesus Veiga Carim
    • 1
    • 3
  • Florian Karl Wittmann
    • 2
  • Maria Teresa Fernandez Piedade
    • 2
  • José Renan da Silva Guimarães
    • 1
  • Luciedi de Cássia Leôncio Tostes
    • 1
  1. 1.Institute of Scientific and Technology Research of Amapá State-IEPAMacapáBrazil
  2. 2.National Institute of Amazonian Research-INPAManausBrazil
  3. 3.Botany Graduate ProgramINPAManausBrazil

Personalised recommendations