Skip to main content

Advertisement

Log in

Exogenous application of silicon at the boot stage decreases accumulation of cadmium in wheat (Triticum aestivum L.) grains

  • Published:
Brazilian Journal of Botany Aims and scope Submit manuscript

Abstract

A pot experiment was conducted to assess role of added silicon (Si) in alleviating cadmium-induced oxidative stress in wheat cultivars (AARI-2011, Cd-sensitive and FSD-2008, Cd-tolerant). Plants were exposed to different levels of CdCl2 (0, 25, 50, and 75 μM Cd/kg) along with sodium silicate (0 and 1.5 mM) at the boot stage. Cadmium stress resulted in a marked decline in various growth attributes, photosynthetic pigments, and the activities of some enzymatic antioxidants, particularly in Cd-sensitive wheat cultivar. Application of Si reduced Cd-mediated oxidative stress and increased photosynthetic pigments and proline contents in both wheat cultivars. Although Si application affected the shoot and grain Cd2+ concentrations differently in both cultivars, it decreased Cd2+ concentrations in the grains in both wheat cultivars. However, at higher Cd2+ concentrations, Si was very effective in decreasing Cd2+ concentrations in the grains of Cd-tolerant cultivar. The alleviatory effects of Si on Cd2+ concentrations in grain could be attributed to the altered Cd2+ uptake and translocation, particularly at higher Cd2+ concentrations in both wheat cultivars. The effectiveness of Si to reduce grain-Cd2+ concentrations in diverse wheat cultivars suggested its use as soil amendments in the Cd-polluted environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Al-aghabary K, Zhu Z, Shi Q (2004) Influence of silicon supply on chlorophyll content, chlorophyll fluorescence, and antioxidative enzyme activities in tomato plants under salt stress. J Plant Nutr 27:2101–2115

    Article  CAS  Google Scholar 

  • Amiri J, Entesari S, Delavar K, Saadatmand M, Rafie NA (2012) The Effect of silicon on cadmium stress in Echium amoenum. World Acad Sci Eng Technol 62:242–245

    Google Scholar 

  • Ashraf M (2009) Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnol Adv 27:84–93

    Article  CAS  PubMed  Google Scholar 

  • Ashraf MA, Ashraf M, Shahbaz M (2012) Growth stage-based modulation in antioxidant defense system and proline accumulation in two hexaploid wheat (Triticum aestivum L.) cultivars differing in salinity tolerance. Flora-Morphol Distrib Funct Ecol Plants 207:388–397

    Article  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free Pro for water stress studies. Plant Soil 39:205–217

    Article  CAS  Google Scholar 

  • Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot 91:179–194

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cakmak I, Strboe D, Marschner H (1993) Activities of hydrogen peroxide scavenging enzymes in germinating wheat seeds. J Exp Bot 44:127–132

    Article  CAS  Google Scholar 

  • Chaffei C, Pageau K, Suzuki A, Gouia H, Ghorbel MH, Masclaux-Chaoui A, Mazhoudi S, Ghorbal MH, ElFerjani E (1997) Cadmium and Zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in bean (Phaseolus vulgaris L.). Plant Sci 127:139–147

    Article  Google Scholar 

  • Chaoui A, Mazhoudi S, Ghorbal MH, ElFerjani E (1997) Cadmium and Zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in bean (Phaseolus vulgaris L.). Plant Sci 127:139–147

    Article  CAS  Google Scholar 

  • Chen YX, He YF, Luo YM, Yu YL, Lin Q, Wong MH (2003) Physiological mechanism of plant roots exposed to cadmium. Chemosphere 50:789–793

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Xu B, Liu L, Luo Y, Zhou H, Chen W, Shen T, Han X, Kontes CD, Huang S (2011) Cadmium induction of reactive oxygen species activates the mTOR pathways, leading to neuronal cell death. Free Radical Biol Med 50:624–632

    Article  CAS  Google Scholar 

  • Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochemie 88:1707–1719

    Article  CAS  Google Scholar 

  • Davies BH (1976) Carotenoids. In: Goodwin TW (ed) Chemistry and biochemistry of plant pigments, 2nd edn. Academic Press, San Francisco, pp 38–165

    Google Scholar 

  • Epstein E, Bloom AJ (2005) Mineral nutrition of plants: principles and perspectives, 2nd edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Esfandiari E, Shekari F, Shekari F, Esfandiari M (2007) The effect of salt stress on antioxidant enzymes activity and lipid peroxidation on the wheat seedling. Not Bot Hort Agrobot Cluj 35:48–56

    CAS  Google Scholar 

  • Fornazier RF, Ferreira RR, Vitoria AP, Molina SMG, Lea PJ, Azevedo RA (2002) Effects of cadmium on antioxidant enzyme activities in sugar cane. Biol Plant 45:91–97

    Article  CAS  Google Scholar 

  • Gallego SM, Benavídes MP, Tomaro ML (1996) Effect of heavy metal ion excess on sunflower leaves: evidence for involvement of oxidative stress. Plant Sci 121:151–159

    Article  CAS  Google Scholar 

  • Gallego SM, Pena LB, Barcia RA, Azpilicueta CE, Lannone MF, Maria F (2012) Unravelling cadmium toxicity and tolerance in plants: insight into regulatory mechanisms. Environ Exp Bot 83:33–46

    Article  CAS  Google Scholar 

  • Gao X, Zou C, Wang L, Zhang F (2006) Silicon decreases transpiration rate and conductance from stomata of maize plants. J Plant Nutr 29:1637–1647

    Article  CAS  Google Scholar 

  • Gong H, Zhu X, Chen K, Wang S, Zhang C (2005) Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Sci 169:313–321

    Article  CAS  Google Scholar 

  • Greger M, Lofstedt M (2004) Comparison of uptake and distribution of cadmium in different cultivars of bread and durum wheat. Crop Sci 44:501–507

    Article  CAS  Google Scholar 

  • Hall JL, Williams LE (2003) Transition metal transporters in plants. J Exp Bot 54:2601–2613

    Article  CAS  PubMed  Google Scholar 

  • Hamilton PB, Van-Slyke DD (1943) Amino-acid determination with ninhydrine. J Biol Chem 150:231–233

    CAS  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Calif Agric Exp Station Circ (Berkley) 347:1–32

    Google Scholar 

  • Hodges DM, DeLong DL, Forney CF, Prange RK (1999) Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207:604–611

    Article  CAS  Google Scholar 

  • Hossain MT, Soga K, Wakabayashi K, Kamisaka S, Fujii S, Yamamoto R, Hoson T (2007) Modification of chemical properties of cell walls by silicon and its role in regulation of the cell wall extensibility in oat leaves. J Plant Physiol 164:385–393

    Article  CAS  PubMed  Google Scholar 

  • Hossain MA, Piyatida P, Teixeira da Silva JA, Fujita M (2012) Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. J Bot 2012:1–37

    Article  Google Scholar 

  • Hussain I, Iqbal M, Qurat-Ul-Ain S, Rasheed R, Mahmood S, Perveen A, Wahid A (2012) Cadmium dose and exposure-time dependent alterations in growth and physiology of maize (Zea mays). Int J Agric Biol 11:814–9596

    Google Scholar 

  • Hussain I, Akhtar S, Ashraf MA, Rasheed R, Siddiqi EH, Ibrahim M (2013) Response of maize seedlings to cadmium application after different time intervals. ISRN Agron 2013:1–9

    Article  Google Scholar 

  • Iannone MF, Rosales EP, Groppa MD, Benavides MP (2010) Reactive oxygen species formation and cell death in catalase-deficient tobacco leaf disks exposed to cadmium. Protoplasma 245:15–27

    Article  CAS  PubMed  Google Scholar 

  • Jonak C, Nakagami H, Hirt H (2004) Heavy metal stress. Activation of distinct mitogen-activated protein kinase pathways by copper and cadmium. Plant Physiol 136:3276–3283

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Keller C, Marchetti M, Rossi L, Lugon-Moulin N (2005) Reduction of cadmium availability to tobacco (Nicotiana tabacum) plants using soil amendments in low cadmium-contaminated agricultural soils: a pot experiment. Plant Soil 276:69–84

    Article  CAS  Google Scholar 

  • Kirkham MB (2006) Cadmium in plants on polluted soils: effects of soil factors, hyperaccumulation, and amendments. Geoderma 137:19–32

    Article  CAS  Google Scholar 

  • Lagriffoul A, Mocquot B, Mench M, Vangronsveld J (1998) Cadmium toxicity effects on growth, mineral and chlorophyll contents and activities of stress related enzymes in young maize plants (Zea mays L.). Plant Soil 200:241–250

    Article  CAS  Google Scholar 

  • Larsson EH, Bornman JF, Asp H (1998) Influence of UV-β radiation and cadmium on chlorophyll fluorescence, growth and nutrient content in Brassica napus. J Exp Bot 323:1031–1039

    Article  Google Scholar 

  • Li GJ, Liu YH, Wu XH, Zhu ZJ, Wang BG, Lu ZF (2007) Effects of exogenous silicon on reactive oxygen species metabolism of asparagus bean seedlings under rust stress. Acta Hort Sin 34:1207–1212

    CAS  Google Scholar 

  • Liang YC, Sun WC, Zhu YG, Christie P (2007) Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: a review. Environ Pollut 147:422–428

    Article  CAS  PubMed  Google Scholar 

  • Ma JF, Takahashi E (eds) (2002) Brief history of silicon research in Japan - Birth of silicate fertilizer. In: soil, fertilizer, and plant silicon research in Japan. Elsevier, Amsterdam, pp 1–3

  • Mobin M, Khan NA (2007) Photosynthetic activity, pigment composition and antioxidative response of two mustard (Brassica juncea) cultivars differing in photosynthetic capacity subjected to cadmium stress. J Plant Physiol 164:601–610

    Article  CAS  PubMed  Google Scholar 

  • Nazar R, Iqbal N, Syeed S, Khan NA (2011) Salicylic acid alleviates decreases in photosynthesis under salt stress by enhancing nitrogen and sulfur assimilation and antioxidant metabolism differentially in two mungbean cultivars. J Plant Physiol 168:807–815

    Article  CAS  PubMed  Google Scholar 

  • Nazar R, Iqbal N, Masood A, Iqbal M, Khan R, Syeed S, Khan NA (2012) Cadmium toxicity in plants and role of mineral nutrients in its alleviation. Am J Plant Sci 3:1476–1489

    Article  Google Scholar 

  • Neumann D, Zur Neiden U (2001) Silicon and heavy metal tolerance of higher plants. Phytochemistry 56:685–692

    Article  CAS  PubMed  Google Scholar 

  • Rains DW, Epstein E, Zasoski RJ, Aslam M (2006) Active silicon uptake by wheat. Plant Soil 280:223–228

  • Rascio N, Vecchia FD, La Rocca N, Barbato R, Pagliano C, Raviolo M, Gonnelli C, Gabbrielli R (2008) Metal accumulation and damage in rice (cv. Vialone nano) seedlings exposed to cadmium. Environ Exp Bot 62:267–278

    Article  CAS  Google Scholar 

  • Rogalla H, Ronald V (2002) Role of leaf apoplast in silicon-mediated manganese tolerance of Cucumis sativus L. Plant, Cell Environ 25:549–555

    Article  CAS  Google Scholar 

  • Romero-Aranda MR, Jurado O, Cuartero J (2006) Silicon alleviates the deleterious salt effect on tomato plant growth by improving plant water status. J Plant Physiol 163:847–855

    Article  CAS  PubMed  Google Scholar 

  • Sanità di Toppi L, Gabbrielli R (1999) Response to cadmium in higher plants. Environ Exp Bot 41:105–130

    Article  Google Scholar 

  • Sarwar N, Malhi SS, Zia MH, Naeem A, Bibi S, Farid G (2010) Role of mineral nutrition in minimizing cadmium accumulation by plants. J Sci Food Agric 90:925–937

    CAS  PubMed  Google Scholar 

  • Shaw BP (1995) Effects of mercury and cadmium on the activities of antioxidative enzymes in the seedlings of Phaseolus aureus. Biol Plant 37:587–596

    Article  CAS  Google Scholar 

  • Shi QH, Bao ZY, Zhu ZJ, He Y, Qian QQ, Yu JQ (2005) Silicon mediated alleviation of Mn toxicity in Cucumis sativus in relation to activities of superoxide dismutase and ascorbate peroxidase. Phytochemistry 66:1551–1559

    Article  CAS  PubMed  Google Scholar 

  • Siedlecka A, Krupa Z (1996) Interaction between cadmium and iron and its effects on photosynthetic capacity of primary leaves of Phaseolus vulgaris. Plant Physiol Biochem 34:833–841

    CAS  Google Scholar 

  • Stohs SJ, Bagachi D, Hassoun E, Bgachi M (2000) Oxidative mechanism in the toxicity of chromium and cadmium ions. J Environ Pathol Toxicol Oncol 19:201–213

    CAS  PubMed  Google Scholar 

  • Strack D, Wray V (1989) Anthocyanins. In: Harborne JB (ed) Methods in plant biology Plant phenolics. Academic Press/Harcourt Brace Jovanovich, London, Vol. 1, pp. 325–356

  • Tantrey MS, Agnihotri RK (2010) Chlorophyll and proline content of gram (Cicer arietinum L.) under cadmium and mercury treatments. Res J Agric Sci 1:119–122

    Google Scholar 

  • Van Assche F, Clijsters C (1990) Effects of metals on enzyme activity in plants. Plant, Cell Environ 13:195–206

    Article  Google Scholar 

  • Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain treated bean plants. Protective role of exogenous polyamines. Plant Sci 151:59–66

    Article  CAS  Google Scholar 

  • Wei S, Zhou Q, Wang X (2005) Identification of weed plants excluding the uptake of heavy metals. Environ Int 31:829–834

    Article  PubMed  Google Scholar 

  • Wolf B (1982) An improved universal extracting solution and its use for diagnosing soil fertility. Comm Soil Sci Plant Anal 13:1005–1033

    Article  CAS  Google Scholar 

  • Wu FB, Chen F, Wei K, Zhang GP (2004) Effect of cadmium on free amino acid, glutathione and ascorbic acid concentrations in two barley genotypes (Hordeum vulgare L.) deferring in cadmium tolerance. Chemosphere 57:447–454

    Article  CAS  PubMed  Google Scholar 

  • Yang G, Rhodes D, Joly RJ (1996) Effect of high temperature on membrane stability and chlorophyll fluorescence in glycine betaine-deficient and glycinebetaine containing maize lines. Aust J Plant Physiol 23:437–443

    Article  CAS  Google Scholar 

  • Yoshida S, Forno DA, Cock JH, Gomez KA (1976) Laboratory manual for physical studies of rice. IRRI, Los Baños, p 83

    Google Scholar 

  • Zou J, Yue J, Jiang W, Liu D (2012) Effects of cadmium stress on root tip cells and some physiological indexes in Allium cepa var. Agrogarum L. Acta Biol Cracov Ser Bot 54:129–141

    Google Scholar 

Download references

Acknowledgments

This work was partially supported by Higher Education Commission (HEC), Islamabad, Pakistan through Project grant No. PM-IPFP/HRD/HEC/2011/0579).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Arslan Ashraf.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, I., Ashraf, M.A., Rasheed, R. et al. Exogenous application of silicon at the boot stage decreases accumulation of cadmium in wheat (Triticum aestivum L.) grains. Braz. J. Bot 38, 223–234 (2015). https://doi.org/10.1007/s40415-014-0126-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40415-014-0126-6

Keywords

Navigation