Skip to main content

Advertisement

Log in

Functional diversity and adaptative strategies of planktonic and periphytic algae in isolated tropical floodplain lake

  • Ecology and Biogeography
  • Published:
Brazilian Journal of Botany Aims and scope Submit manuscript

Abstract

Functional diversity and adaptative strategies of planktonic and periphytic algae in isolated tropical floodplain lake. This study aimed to test the hypothesis that after a great magnitude and high duration of flood pulse in floodplain, functional diversity of phytoplankton and phycoperiphyton communities will be higher during high water. The strategies’ dynamics evaluated during high and low water periods consisted of size classes, life forms, and functional groups. For the phytoplankton, the adaptations to floating, and for phycoperiphyton, the intensity and structure for attachment to substrate were also analyzed. Functional diversity was calculated from functional dendrograms of species. Functional diversity, richness, and density of both communities presented the greatest values during the high waters. In the high waters, Cryptomonas marsonii Skuja was dominant in plankton and Pseudoanabaena skujae Claus in periphyton, while in the low water, Merismopedia tenuissima Lemm. was dominant in plankton and Fragilaria capucina Desm. was dominant in periphyton. Thus, the flood pulse promoted the dominance of free-floating species in plankton, during the high water, and of metaphytic species in periphyton. In the low water, we observed the dominance of species with higher surface/volume ratio in plankton, and strongly attached in periphyton. We concluded that, in isolated floodplain lake, possibly the flood pulse directs the functional diversity of phytoplankton and phycoperiphyton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • American Public Health Association (1995) Standard methods for the examination of water and wastewater. Byrd Prepress Springfield, Washington

    Google Scholar 

  • Bicudo DC (1990) Considerações sobre metodologia de contagem de algas do perifíton. Acta Limnologica Brasilica 3:459–475

    Google Scholar 

  • Biggs JF, Stevenson RJ, Lowe RL (1998) A habitat matrix conceptual model for stream periphyton. Archiv für Hydrobiologie 143:21–56

    Google Scholar 

  • Bovo-Scomparim VM, Train S (2008) Long-term variability of the phytoplankton community in a isolated floodplain lake of the Ivinhema River State Park, Brazil. Hydrobiologia 610:331–344

    Article  Google Scholar 

  • Carrick HJ, Steinman AD (2001) Variation in periphyton biomass and species composition in Lake Ockeechobee, Florida (USA): distribution of algal guilds along environmental gradients. Archiv für Hydrobiologie 152:411–438

    Google Scholar 

  • Cattaneo A, Kerimian T, Roberge M, Marty J (1997) Periphyton distribution and abundance on substrata of different of stream trophy. Hydrobiologia 354:101–110

    Article  CAS  Google Scholar 

  • Cianciaruso MV, Silva IA, Batalha MA (2009) Diversidades filogenética e funcional: novas abordagens para a ecologia de comunidades. Biota Neotropica 9:093–103

    Article  Google Scholar 

  • Cole GA (1994) Textbook of Limnology. Waveland Press, Lake Zurich

    Google Scholar 

  • Cox EJ (1991) What is the basis for using diatoms as monitors of river quality? In: Whitton BA, Rott E, Freidrich G (eds) Use of algae for monitoring rivers. University of Innsbruck, Austria, pp 33–40

    Google Scholar 

  • Crossetti LO, Bicudo CEM (2008) Adaptations in phytoplankton life strategies to imposed change in a shallow urban tropical eutrophic reservoir, Garças Reservoir, over 8 years. Hydrobiologia 614:91–105

    Article  Google Scholar 

  • Díaz S, Cabido M (2001) Vive la différence: plant functional diversity matters to ecosystem processes. Trends Ecol Evol 16:646–655

    Article  Google Scholar 

  • Dimitriadis C, Evagelopoulos A, Koutsoubas D (2012) Functional diversity and redundancy of soft bottom communities in brackish waters areas: local vs regional effects. J Exp Mar Biol Ecol 426–427:53–59

    Article  Google Scholar 

  • Ferragut C, Bicudo DC (2010) Periphytic algal community adaptive strategies in N and P enriched experiments in a tropical oligotrophic reservoir. Hydrobiologia 646:295–309

    Article  CAS  Google Scholar 

  • Finkel ZV, Beardall J, Flynn KJ, Quigg A, Rees TV, Raven JA (2010) Phytoplankton in a changing world: cell size and elemental stoichiometry. J Plankton Res 32:119–137

    Article  CAS  Google Scholar 

  • Goldsborough LG, Robinson GGC (1996) Pattern in wetlands. In: Stevenson RJ, Bothwell ML, Lowe RL (eds) Algal ecology in freshwater benthic ecosystems. Academic Press, San Diego, pp 77–117

    Google Scholar 

  • Gopal B (1994) The role of ecotones (transition zones) in the conservation and management of tropical inland waters. Mitteilung Internationale Vereinigung fuer Theoretische unde Amgewandte Limnologie 24:17–25

    Google Scholar 

  • Hutchinson GE (1959) Homage to Santa Rosalia or why are there so many kinds of animals? Am Nat 93:145–159

    Article  Google Scholar 

  • Junk WJ, Bayley PB, Sparks RE (1989) The flood pulse concept in river–floodplain systems. Can J Fish Aquat Sci 106:110–127

    Google Scholar 

  • Kruk C, Huszar VLM, Peeters ETHM, Bonilla S, Costa L, Lurling M, Reynolds CS, Scheffer M (2010) A morphological classification capturing functional variation in phytoplankton. Freshw Biol 55:614–627

    Article  Google Scholar 

  • Lobo E, Leighton G (1986) Estructuras comunitarias de las fitocenosis planctónicas de los sistemas de desembocaduras de rios y esteros de la zona central de Chile. Revista Biologia Marina 22:1–29

    Google Scholar 

  • Macarthur RH, Levins R (1967) The limiting similarity, convergence and divergence of coexisting species. Am Nat 101:377–385

    Article  Google Scholar 

  • Margalef R (1983) Limnologia. Ediciones Omega, Barcelona

    Google Scholar 

  • Mcgill BJ, Jenquist BJ, Weiher E, Westoby M (2006) Rebuilding community ecology from functional traits. Trends Ecol Evol 21:178–185

    Article  PubMed  Google Scholar 

  • Melo S, Huszar VLM (2000) Phytoplankton in an Amazonian flood-plain lake (Lago Batata, Brasil): diel variation and species strategies. J Plankton Res 22:63–76

    Article  Google Scholar 

  • Moschini-Carlos V, Henry R, Pompêo MLM (2000) Seasonal variation of biomass and productivity of the periphytic community on artificial substrata in the Jurumirim Reservoir (São Paulo, Brazil). Hydrobiologia 434:35–40

    Article  Google Scholar 

  • Nabout JC, Nogueira IS, Oliveira LG (2005) Phytoplankton community of floodplain lakes of the Araguaia River, Brazil, in the rainy and dry seasons. J Plankton Res 28:181–193

    Article  Google Scholar 

  • Passy SI (2007) Diatom ecological guilds display distinct and predictable behavior along nutrient and disturbance gradients in running waters. Aquat Bot 86:171–178

    Article  Google Scholar 

  • Petchey OL, Gaston KJ (2002) Functional diversity (FD), species richness, and community composition. Ecol Lett 5:402–411

    Article  Google Scholar 

  • Petchey OL, Gaston KJ (2006) Functional diversity: back to basics and looking forward. Ecol Lett 9:741–758

    Article  PubMed  Google Scholar 

  • R Development Core Team (2006) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org

  • Reynolds CS (1997) Excellence in ecology: vegetation processes in the pelagic: a model for ecosystem theory. Ecology Institute, Germany

    Google Scholar 

  • Reynolds CS (2006) Ecology of phytoplankton. Cambridge University Press, New York

    Book  Google Scholar 

  • Ros J (1979) Práctica de Ecologia. Omega, Barcelona

    Google Scholar 

  • Stevenson RJ (1996) An introduction to algae ecology in freshwater benthic habitats. In: Stevenson RJ, Bothwell ML, Lowe RL (eds) Algal ecology in freshwater benthic ecosystems. Academic Press, San Diego, pp 3–30

    Google Scholar 

  • Thomaz SM, Roberto MC, Bini LM (1997) Caracterização limnológica dos ambientes aquáticos e influência dos níveis fluviométricos. In: Vazzoler, AEM, Agostinho AA, Hahn NS (eds) A planície de inundação do alto Rio Paraná: aspectos físicos, biológicos e socioeconômicos. Maringá, Editora da Universidade Estadual de Maringá, pp 73–102

  • Thomaz SM, Pagioro TA, Bini LM, Roberto MC, Rocha RRA (2004) Limnological characterization of the aquatic environments and the influence of hydrometric levels. In: Thomaz SM, Agostinho AA, Hann NS (eds) The Upper Paraná river and its floodplain: physical aspects, ecology and conservation. Backhuys, Netherlands, pp 75–102

    Google Scholar 

  • Tilman D (2001) Functional diversity. In: Levin SA (ed) Encyclopedia of biodiversity. Academic Press, San Diego, pp 109–120

    Chapter  Google Scholar 

  • Tilman D, Knops J, Wedin D, Reich P, Ritchie M, Siemann E (1997) The influence of functional diversity and composition on ecosystem processes. Science 277:1300–1302

    Article  CAS  Google Scholar 

  • Train S, Rodrigues LC (1998) Temporal fluctuations of the phytoplankton community of the Baía River, in the upper Paraná River floodplain, Mato Grosso do Sul, Brazil. Hydrobiologia 361:125–134

    Article  Google Scholar 

  • Train S, Rodrigues LC (2004) Phytoplankton assemblage. In: Thomaz SM, Agostinho AA, Hann NS (eds) The Upper Paraná river and its floodplain: physical aspects, ecology and conservation. Backhuys, Netherlands, pp 103–124

    Google Scholar 

  • Train S, Oliveira MD, Quevedo MT (2000) Dinâmica Sazonal da Comunidade Fitoplanctônica de um Canal Lateral (Canal Cortado) do Alto Rio Paraná (PR, Brasil). Acta Scientiarum Biological Sciences 22:389–399

    Google Scholar 

  • Tuji A (2000) Observation of developmental processes in loosely attached diatom (Bacillariophyceae) communities. Phycol Res 48:75–84

    Article  Google Scholar 

  • Utermöhl H (1958) Zur Vervollkommnung der quantitativen phytoplankton-methodic. Mitteilungen Internationale Vereinigung für Theoretische und Angewandte Limnologie 9:1–39

    Google Scholar 

  • Violle C, Navas ML, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007) Let the concept of trait be functional. Oikos 116:882–892

    Article  Google Scholar 

  • Walker B (1992) Biodiversity and ecological redundancy. Conserv Biol 6:18–23

    Article  Google Scholar 

  • Weithoff G (2003) The concepts of ‘plant functional types’ and ‘functional diversity’ in lake phytoplankton: a new understanding of phytoplankton ecology? Freshw Biol 48:1669–1675

    Article  Google Scholar 

  • Wetzel RG, Likens GE (1991) Limnological analysis, 2nd edn. Springer, New York

    Book  Google Scholar 

Download references

Acknowledgments

To Coordination of Improvement of Higher Education Personnel (CAPES) for the doctoral degree scholarship to the first two authors, to the National Council for Scientific and Technological Development (CNPq) for the productivity grant to Liliana Rodrigues, to the Long Term Ecological Research (CNPq-PELD-Brazil), and to the Núcleo de Pesquisas em Limnologia, Ictiologia e Aqüicultura (NUPELIA) for technical and logistical support during the performance of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bárbara Dunck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dunck, B., Bortolini, J.C., Rodrigues, L. et al. Functional diversity and adaptative strategies of planktonic and periphytic algae in isolated tropical floodplain lake. Braz. J. Bot 36, 257–266 (2013). https://doi.org/10.1007/s40415-013-0029-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40415-013-0029-y

Keywords

Navigation