Skip to main content
Log in

Concepts of pollinator performance: is a simple approach necessary to achieve a standardized terminology?

  • Review Paper
  • Published:
Brazilian Journal of Botany Aims and scope Submit manuscript

Abstract

Quantifying the importance of pollinators for reproductive success of plants is a central question in reproductive biology. However, the literature contains a profusion of terms and sometimes conflicting definitions. This inconsistency is a barrier to broad comparisons and conceptual advances in different fields. In recent decades, some widely disseminated studies have proposed recommendations to foster greater standardization. Nevertheless, the literature continues with little uniformity, and terms such as “efficacy,” “efficiency,” and “effectiveness” of pollinators are still used inconsistently. Previous studies concerning conceptual and terminological uniformity provided a series of particular terms related to specific metrics and/or strict definitions for these widely used terms. I here propose comprehensive verbal definitions for the terms that have historically been used by most specialists. Pollinator performance in achieving reproductive success is defined here as its effectiveness, which is, broadly, given by the product of two components: pollinator efficacy and intensity of visitation. In some approaches, a third component – pollinator efficiency – is important for estimates of its effectiveness. The definitions suggested here apply to different variables, parameters, and procedures for study, and may refer to either individuals or populations of a pollinator species, or to functional groups of pollinators. This terminology can be applied widely, as it is not constrained by the scope, approach or scale of a study. A basic terminology with simple definitions may facilitate consistent use of these terms by specialists, particularly among younger investigators, thus surmounting the first barrier to future proposals for conceptual and methodological unification at larger scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aigner PA (2001) Optimality modeling and fitness trade-offs: When should plants become pollinator specialists? Oikos 95:177–184

    Article  Google Scholar 

  • Aizen MA, Morales CL, Morales JM (2008) Invasive mutualists erode native pollination webs. PLoS Biol 6:e31

    Article  PubMed  Google Scholar 

  • Arroyo J, Dafni A (1995) Variation in habitat, season, flower traits, and pollinators in dimorphic Narcissus tazetta L. (Amaryllidaceae) in Israel. New Phytol 129:135–145

    Article  Google Scholar 

  • Avila RS Jr, Freitas L (2011) Frequency of visits and efficiency of pollination by diurnal and nocturnal lepidopterans for the dioecious tree Randia itatiaiae (Rubiaceae). Aust J Bot 59:176–184

    Article  Google Scholar 

  • Borrell BJ (2007) Scaling of nectar foraging in orchid bees. Am Nat 169:569–580

    Article  PubMed  Google Scholar 

  • Brunet J (2009) Pollinators of the Rocky Mountain Columbine: temporal variation, functional groups and associations with floral traits. Ann Bot 103:1567–1578

    Article  PubMed  Google Scholar 

  • Campbell DR (1989) Measurements of selection in a hermaphroditic plant: variation in male and female pollination success. Evolution 43:318–334

    Article  Google Scholar 

  • Canto-Aguilar MA, Parra-Tabla V (2000) Importance of conserving alternative pollinators: assessing the pollination efficiency of the squash bee, Peponapis limitaris in Cucurbita moschata (Cucurbitaceae). J Insect Conserv 4:203–210

    Article  Google Scholar 

  • Case MA, Bradford ZR (2009) Enhancing the trap of lady’s slippers: a new technique for discovering pollinators yields new data from Cypripedium parviflorum (Orchidaceae). Bot J Linn Soc 160:1–10

    Article  Google Scholar 

  • Conner JK, Davis R, Rush S (1995) The effect of wild radish floral morphology on pollination efficiency by four taxa of pollinators. Oecologia 104:234–245

    Article  Google Scholar 

  • Cunningham SJ (2001) An introduction to economic evaluation of health care. J Orthod 28:246–250

    Article  PubMed  CAS  Google Scholar 

  • Dafni A, Kevan PG, Husband BC (2005) Practical pollination biology. Enviroquest, Ontario

    Google Scholar 

  • Endress PK (1994) Diversity and evolutionary biology of tropical flowers. Cambridge University Press, Cambridge

    Google Scholar 

  • Engel EC, Irwin RE (2003) Linking pollinator visitation rate and pollen receipt. Am J Bot 90:1612–1618

    Article  Google Scholar 

  • Faegri K, van der Pijl L (1979) The principles of pollination ecology, 3rd edn. Pergamon Press, Oxford

    Google Scholar 

  • Fenster CB, Armbruster S, Wilson P, Dudash MR, Thomson JD (2004) Pollination syndromes and floral specialization. Annu Rev Ecol Evol Syst 35:375–403

    Article  Google Scholar 

  • Fishbein M, Venable DL (1996) Diversity and temporal change in the effective pollinators of Asclepias tuberosa. Ecology 77:1061–1073

    Article  Google Scholar 

  • Freitas L, Sazima M (2006) Pollination biology in a tropical high-altitude grassland in Brazil: interactions at the community level. Ann Mo Bot Gard 93:465–516

    Article  Google Scholar 

  • Galen C, Stanton ML (1989) Bumble bee pollination and floral morphology: factors influencing pollen dispersal in the alpine sky pilot, Polemonium viscosum (Polemoniaceae). Am J Bot 76:419–426

    Article  Google Scholar 

  • Gómez JM, Perfectti F, Bosch J, Camacho JPM (2009) A geographic selection mosaic in a generalized plant–pollinator–herbivore system. Ecol Monogr 79:245–263

    Article  Google Scholar 

  • Gowda V, Kress WJ (2013) A geographic mosaic of plant–pollinator interactions in the Eastern Caribbean Islands. Biotropica 45:224–235

    Google Scholar 

  • Harder LD, Thomson JD (1989) Evolutionary options for maximizing pollen dispersal of animal-pollinated plants. Am Nat 133:323–344

    Article  Google Scholar 

  • Hargreaves AL, Harder LD, Steven JD (2012) Floral traits mediate the vulnerability of aloes to pollen theft and inefficient pollination by bees. Ann Bot 109:761–772

    Article  PubMed  Google Scholar 

  • Herrera CM (1987) Components of pollinator “quality”: comparative analysis of a diverse insect assemblage. Oikos 50:79–90

    Article  Google Scholar 

  • Herrera CM (1988) Variation in mutualisms: the spatio-temporal mosaic of an insect pollinator assemblage. Biol J Linn Soc 35:95–125

    Article  Google Scholar 

  • Herrera CM (1989) Pollinator abundance, morphology, and flower visitation rate: analysis of the “quantity” component in a plant–pollinator system. Oecologia 80:241–248

    Google Scholar 

  • Herrera CM (2000) Flower-to-seedling consequences of different pollination regimes in an insect-pollinated shrub. Ecology 81:15–29

    Article  Google Scholar 

  • Herrera CM (2005) Plant generalization on pollinators: species property or local phenomenon? Am J Bot 92:13–20

    Article  PubMed  Google Scholar 

  • Hingston AB, McQuillan PB (2000) Are pollination syndromes useful predictors of floral visitors in Tasmania? Austral Ecol 25:600–609

    Article  Google Scholar 

  • Inouye DW (1980) The terminology of floral larceny. Ecology 61:1251–1253

    Article  Google Scholar 

  • Inouye DW, Gill DE, Dudash MR, Fenster CB (1994) A model and lexicon for pollen fate. Am J Bot 81:1517–1530

    Article  Google Scholar 

  • Irwin RE, Bronstein JL, Manson JS, Richardson L (2010) Nectar robbing: ecological and evolutionary perspectives. Annu Rev Ecol Evol Syst 41:271–292

    Article  Google Scholar 

  • Jennersten O (1984) Flower visitation and pollination efficiency of some North European butterflies. Oecologia 63:80–89

    Article  Google Scholar 

  • Karron JD, Marshall DL (1990) Fitness consequences of multiple paternity in wild radish, Raphanus sativus. Evolution 44:260–268

    Article  Google Scholar 

  • Kato E, Hiura T (1999) Fruit set in Styrax obassia (Styracaceae): the effect of light availability, display size, and local floral density. Am J Bot 86:495–501

    Article  PubMed  CAS  Google Scholar 

  • Kearns CA, Inouye DW (1994) Techniques for pollination biologists. University Press of Colorado, Niwot

    Google Scholar 

  • Kearns CA, Inouye D, Waser N (1998) Endangered mutualisms: the conservation of plant–pollinator interactions. Annu Rev Ecol Syst 29:83–112

    Article  Google Scholar 

  • Kevan PG, Baker HG (1983) Insects as flower visitors and pollinators. Annu Rev Entomol 28:407–453

    Article  Google Scholar 

  • Keys RN, Buchmann SL, Smith SE (1995) Pollination effectiveness and pollination efficiency of insects foraging Prosopis velutina in south-eastern Arizona. J Appl Ecol 32:519–527

    Article  Google Scholar 

  • Kishore K, Kalita H, Rinchen D, Lepcha B (2012) Evidence of functional specialization and pollination syndrome in Amomum subulatum Roxb. (Zingiberaceae). Curr Sci 103:193–199

    Google Scholar 

  • Laurance WF (2009) Conserving the hottest of the hotspots. Biol Conserv 142:1137

    Article  Google Scholar 

  • Levin DA, Berube DE (1972) Phlox and Colias: the efficiency of a pollination system. Evolution 26:242–250

    Article  Google Scholar 

  • Lindsey AH (1984) Reproductive biology of Apiaceae. I. Floral visitors to Thaspium and Zizia and their importance in pollination. Am J Bot 71:375–387

    Article  Google Scholar 

  • Maruyama PK, Custódio LN, Oliveira PE (2012) When hummingbirds are the thieves: visitation effect on the reproduction of Neotropical snowbell Styrax ferrugineus Nees & Mart (Styracaceae). Acta Bot Bras 26:58–64

    Article  Google Scholar 

  • Mayer C, Adler L, Armbruster WS, Dafni A, Eardley C, Huang S-Q, Kevan PG, Ollerton J, Packer L, Ssymank A, Stout JC, Potts SG (2011) Pollination ecology in the 21st century: key questions for future research. J Pollinat Ecol 3:8–23

    Google Scholar 

  • Memmott J (1999) The structure of a plant–pollinator food web. Ecol Lett 2:276–280

    Article  Google Scholar 

  • Mitchell RJ, Flanagan RJ, Brown BJ, Waser NM, Karron JD (2009) New frontiers in competition for pollination. Ann Bot 103:1403–1413

    Article  PubMed  Google Scholar 

  • Moragues E, Traveset A (2005) Effect of Carpobrotus spp. on the pollination success of native plant species of the Balearic Islands. Biol Conserv 122:611–619

    Article  Google Scholar 

  • Motten AF (1986) Pollination ecology of the spring wildflower community of a temperate deciduous forest. Ecol Monogr 56:21–42

    Article  Google Scholar 

  • Murcia C, Feinsinger P (1996) Interspecific pollen loss by hummingbirds visiting flower mixtures: effects of floral architecture. Ecology 77:550–560

    Article  Google Scholar 

  • Ne’eman G, Jürgens A, Newstrom-Lloyd L, Potts SG, Dafni A (2010) A framework for comparing pollinator performance: effectiveness and efficiency. Biol Rev 85:435–451

    PubMed  Google Scholar 

  • Ollerton J, Lack A (1998) Relationships between flowering phenology, plant size and reproductive success in Lotus corniculatus (Fabaceae). Plant Ecol 139:35–47

    Article  Google Scholar 

  • Ollerton J, Killick A, Lamborn E, Watts S, Whiston M (2007) Multiple meanings and modes: on the many ways to be a generalist flower. Taxon 56:717–728

    Article  Google Scholar 

  • Ollerton J, Alarcón R, Waser NM, Price MV, Watts S, Cranmer L, Hingston A, Peter CI, Rotenberry J (2009) A global test of the pollination syndrome hypothesis. Ann Bot 103:1471–1480

    Article  PubMed  Google Scholar 

  • Ollerton J, Winfree R, Tarrant S (2011) How many flowering plants are pollinated by animals? Oikos 120:321–326

    Article  Google Scholar 

  • Parker IM, Haubensak KA (2002) Comparative pollinator limitation of two non-native shrubs: Do mutualisms influence invasions? Oecologia 130:250–258

    Google Scholar 

  • Pellmyr O, Thompson JN (1996) Sources of variation in pollinator contribution within a guild: the effects of plant and pollinator factors. Oecologia 107:595–604

    Article  Google Scholar 

  • Philipp M, Jakobsen RB, Nachman G (2009) A comparison of pollen-siring ability and life history between males and hermaphrodites of subdioecious Silene acaulis. Evol Ecol Res 11:787–801

    Google Scholar 

  • Rader R, Howlett BG, Cunningham SA, Westcott DA, Edwards W (2012) Spatial and temporal variation in pollinator effectiveness: Do unmanaged insects provide consistent pollination services to mass flowering crops? J Appl Ecol 49:126–134

    Article  Google Scholar 

  • Sahli HF, Conner JK (2007) Visitation, effectiveness, and efficiency of 15 genera of visitors to wild radish, Raphanus raphanistrum (Brassicaceae). Am J Bot 94:203–209

    Article  PubMed  Google Scholar 

  • Stanton M, Young HJ, Ellstrand NC, Clegg JM (1991) Consequences of floral variation for male and female reproduction in experimental populations of wild radish, Raphanus sativus L. Evolution 45:268–280

    Article  Google Scholar 

  • Stehmann JR, Forzza RC, Salino A, Sobral M, Costa DP, Kamino LHY (2009) Plantas da Floresta Atlântica. Jardim Botânico do Rio de Janeiro, Rio de Janeiro

    Google Scholar 

  • Thompson JN, Cunningham BM (2002) Geographic structure and dynamics of coevolutionary selection. Nature 417:735–738

    Article  PubMed  CAS  Google Scholar 

  • Traveset A, Richardson DM (2006) Biological invasions as disruptors of plant reproductive mutualisms. Trends Ecol Evol 21:208–216

    Article  PubMed  Google Scholar 

  • Vázquez DP, Morris WF, Jordano P (2005) Interaction frequency as a surrogate for the total effect of animal mutualists on plants. Ecol Lett 8:1088–1094

    Article  Google Scholar 

  • Vázquez DP, Blüthgen N, Cagnolo L, Chacoff NP (2009) Uniting pattern and process in plant–animal mutualistic networks: a review. Ann Bot 103:1445–1457

    Article  PubMed  Google Scholar 

  • Waser NM, Chittka L, Price MV, Williams NM, Ollerton J (1996) Generalization in pollination systems, and why it matters. Ecology 77:1043–1060

    Article  Google Scholar 

  • Watts S, Ovalle DH, Herrera MM, Ollerton J (2012) Pollinator effectiveness of native and non-native flower visitors to an apparently generalist Andean shrub, Duranta mandonii (Verbenaceae). Plant Species Biol 27:147–158

    Article  Google Scholar 

  • Wilcock C, Neiland R (2002) Pollination failure in plants: why it happens and when it matters. Trends Plant Sci 7:270–277

    Article  PubMed  CAS  Google Scholar 

  • Young H (2002) Diurnal and nocturnal pollination of Silene alba (Caryophyllaceae). Am J Bot 89:433–440

    Article  PubMed  Google Scholar 

  • Young HJ, Stanton ML (1990) Influences of floral variation on pollen removal and seed production in wild radish. Ecology 71:536–547

    Article  Google Scholar 

Download references

Acknowledgments

The author thanks Faperj (Jovem Cientista) and CNPq (PQ) for Research Fellowships and JW Reid for improving the English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leandro Freitas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freitas, L. Concepts of pollinator performance: is a simple approach necessary to achieve a standardized terminology?. Braz. J. Bot 36, 3–8 (2013). https://doi.org/10.1007/s40415-013-0005-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40415-013-0005-6

Keywords

Navigation