Skip to main content
Log in

Respiratory Effects of Thoracic Load Carriage Exercise and Inspiratory Muscle Training as a Strategy to Optimize Respiratory Muscle Performance with Load Carriage

  • Narrative Student Review
  • Published:
Springer Science Reviews

Abstract

Many occupational and recreational settings require the use of protective and/or load-bearing apparatuses worn over the thoracic cavity, known as thoracic load carriage (LC). Compared to normal, unloaded exercise, thoracic LC exercise places an additional demand on the respiratory and limb locomotor systems by altering ventilatory mechanics as well as circulatory responses to exercise, thus accelerating the development of fatigue in the diaphragm and accessory respiratory muscles compared to unloaded exercise. This may be a consequence of the unique demands of thoracic LC, which places an additional mass load on the thoracic cavity and can restrict chest wall expansion. Therefore it is important to find effective strategies to ameliorate the detrimental effects of thoracic LC. Inspiratory muscle training is an intervention that aims to increase the strength and endurance of the diaphragm and accessory inspiratory muscle and may therefore be a useful strategy to optimize performance with thoracic LC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reprinted with permission

Fig. 2

Reprinted with permission

Fig. 3

Reprinted with permission

Similar content being viewed by others

References

  1. Armstrong NC, Gay LA (2016) The effect of flexible body armour on pulmonary function. Ergonomics 59(5):692–696. https://doi.org/10.1080/00140139.2015.1084052

    Article  PubMed  Google Scholar 

  2. European, Respiratory Society, and American Thoracic Society (2002) ATS/ERS statement on respiratory muscle testing. Am J Respir Crit Care Med 166(4):518–624. https://doi.org/10.1164/rccm.166.4.518

    Article  Google Scholar 

  3. Babcock MA, Johnson BD, Pegelow DF, Suman OE, Griffin D, Dempsey JA (1995) Hypoxic effects on exercise-induced diaphragmatic fatigue in normal healthy humans. J Appl Physiol 78(1):82–92

    CAS  PubMed  Google Scholar 

  4. Babcock MA, Pegelow DF, McClaran SR, Suman OE, Dempsey JA (1995) Contribution of diaphragmatic power output to exercise-induced diaphragm fatigue. J Appl Physiol 78(5):1710–1719

    CAS  PubMed  Google Scholar 

  5. Bastien GJ, Willems PA, Schepens B, Heglund NC (2005) Effect of load and speed on the energetic cost of human walking. Eur J Appl Physiol 94(1–2):76–83. https://doi.org/10.1007/s00421-004-1286-z

    Article  CAS  PubMed  Google Scholar 

  6. Birrell SA, Haslam RA (2010) The effect of load distribution within military load carriage systems on the kinetics of human gait. Appl Ergon 41(4):585–590. https://doi.org/10.1016/j.apergo.2009.12.004

    Article  PubMed  Google Scholar 

  7. Borg GAV (1982) Psychophysical bases of perceived exertion. Med Sci Sports Exerc 14(5):377–381

    Article  CAS  PubMed  Google Scholar 

  8. Boutellier U, Büchel R, Kundert A, Spengler C (1992) The respiratory system as an exercise limiting factor in normal trained subjects. Eur J Appl Physiol Occup Physiol 65(4):347–353. https://doi.org/10.1007/BF00868139

    Article  CAS  PubMed  Google Scholar 

  9. Boutellier U, Piwko P (1992) The respiratory system as an exercise limiting factor in normal sedentary subjects. Eur J Appl Physiol Occup Physiol 64(2):145–152. https://doi.org/10.1007/BF00717952

    Article  CAS  PubMed  Google Scholar 

  10. Brown PI, McConnell AK (2012) Respiratory-related limitations in physically demanding occupations. Aviat Space Environ Med 83(4):424–430. https://doi.org/10.3357/ASEM.3163.2012

    Article  PubMed  Google Scholar 

  11. Bygrave S, Legg SJ, Myers S, Llewellyn M (2004) Effect of backpack fit on lung function. Ergonomics 47(3):324–329. https://doi.org/10.1080/0014013031000157869

    Article  CAS  PubMed  Google Scholar 

  12. Cafarelli E (1982) Peripheral contributions to the perception of effort. Med Sci Sports Exerc 14(5):382–389

    Article  CAS  PubMed  Google Scholar 

  13. Caine MP, McConnell AK (2000) Development and evaluation of a pressure threshold inspiratory muscle trainer for use in the context of sports performance. Sports Eng 3(3):149–159. https://doi.org/10.1046/j.1460-2687.2000.00047.x

    Article  Google Scholar 

  14. Calverley PMA, Koulouris NG (2005) Flow limitation and dynamic hyperinflation: key concepts in modern respiratory physiology. Eur Respir J 25(1):186–199. https://doi.org/10.1183/09031936.04.00113204

    Article  CAS  PubMed  Google Scholar 

  15. Chapman RF, Emery M, Stager JM (1998) Extent of expiratory flow limitation influences the increase in maximal exercise ventilation in hypoxia. Respir Physiol 113(1):65–74. https://doi.org/10.1016/S0034-5687(98)00043-7

    Article  CAS  PubMed  Google Scholar 

  16. Chatham K, Baldwin J, Griffiths H, Summers L, Enright S (1999) Inspiratory muscle training improves shuttle run performance in healthy subjects. Physiotherapy 85(12):676–683. https://doi.org/10.1016/S0031-9406(05)61231-X

    Article  Google Scholar 

  17. Chiappa GR, Roseguini BT, Vieira PJC, Alves CN, Tavares A, Winkelmann ER, Ferlin EL, Stein R, Ribeiro JP (2008) Inspiratory muscle training improves blood flow to resting and exercising limbs in patients with chronic heart failure. J Am Coll Cardiol 51(17):1663–1671. https://doi.org/10.1016/j.jacc.2007.12.045

    Article  PubMed  Google Scholar 

  18. Cordain L, Stager J (1988) Pulmonary structure and function in swimmers. Sports Med 6(5):271–278

    Article  CAS  PubMed  Google Scholar 

  19. Dempsey JA (1986) J.B. Wolffe memorial lecture. Is the lung built for exercise? Med Sci Sports Exerc 18(2):143–155

    Article  CAS  PubMed  Google Scholar 

  20. Depsey JA, Adams L, Ainsworth DM, Fregosi RF, Gallagher CG, Guz A, Johnson BD, Powers SK (1996) Airway, lung, and respiratory muscle function during exercise. In: Rowell LB, Shepard JT (eds) Handbook of physiology. Section 12. Exercise: regulation and integration of multiple systems. New York: Oxford University Press, p 448–514

  21. Dempsey JA, Romer L, Rodman J, Miller J, Smith C (2006) Consequences of exercise-induced respiratory muscle work. Respir Physiol Neurobiol 151(2–3):242–250. https://doi.org/10.1016/j.resp.2005.12.015

    Article  PubMed  Google Scholar 

  22. Dempsey JA, Wagner PD (1999) Exercise-induced arterial hypoxemia. J Appl Physiol 87(6):1997–2006

    CAS  PubMed  Google Scholar 

  23. Dominelli PB, Sheel AW, Foster GE (2012) Effect of carrying a weighted backpack on lung mechanics during treadmill walking in healthy men. Eur J Appl Physiol 112(6):2001–2012. https://doi.org/10.1007/s00421-011-2177-8

    Article  PubMed  Google Scholar 

  24. Dominelli PB, Render JN, Molgat-Seon Y, Foster GE, Sheel AW (2014) Precise mimicking of exercise hyperpnea to investigate the oxygen cost of breathing. Respir Physiol Neurobiol 201:15–23. https://doi.org/10.1016/j.resp.2014.06.010

    Article  CAS  PubMed  Google Scholar 

  25. Downey AE, Chenoweth LM, Townsend DK, Ranum JD, Ferguson CS, Harms CA (2007) Effects of inspiratory muscle training on exercise responses in normoxia and hypoxia. Respir Physiol Neurobiol 156(2):137–146. https://doi.org/10.1016/j.resp.2006.08.006

    Article  PubMed  Google Scholar 

  26. Enright SJ, Unnithan VB, Heward C, Withnall L, Davies DH (2006) Effect of high-intensity inspiratory muscle training on lung volumes, diaphragm thickness, and exercise capacity in subjects who are healthy. Phys Ther 86(3):345–354

    PubMed  Google Scholar 

  27. Faghy M, Brown P (2014) Thoracic load carriage-induced respiratory muscle fatigue. Eur J Appl Physiol 114(5):1085–1093. https://doi.org/10.1007/s00421-014-2839-4

    Article  PubMed  Google Scholar 

  28. Faghy MA, Brown PI (2014) Preloaded time trial to assess load carriage performance. J Strength Cond Res 28(12):3354–3362. https://doi.org/10.1519/jsc.0000000000000555

    Article  PubMed  Google Scholar 

  29. Faghy MA, Brown PI (2016) Training the inspiratory muscles improves running performance when carrying a 25 kg thoracic load in a backpack. Eur J Sport Sci 16(5):585–594. https://doi.org/10.1080/17461391.2015.1071878

    Article  PubMed  Google Scholar 

  30. Faghy MA, Blacker S, Brown PI (2016) Effects of load mass carried in a backpack upon respiratory muscle fatigue. Eur J Sport Sci 16(8):1032–1038. https://doi.org/10.1080/17461391.2016.1202326

    Article  PubMed  Google Scholar 

  31. Farkas GA, Cerny FJ, Rochester DF (1996) Contractility of the ventilatory pump muscles. Med Sci Sports Exerc 28(9):1106–1114

    Article  CAS  PubMed  Google Scholar 

  32. Fitzgerald RS, Hauer MC, Bierkamper GG, Raff H (1984) Responses of in vitro rat diaphragm to changes in acid-base environment. J Appl Physiol 57(4):1202–1210

    CAS  PubMed  Google Scholar 

  33. Gandevia SC (2001) Spinal and supraspinal factors in human muscle fatigue. Physiol Rev 81(4):1725–1789

    CAS  PubMed  Google Scholar 

  34. Gething AD, Williams M, Davies B (2004) Inspiratory resistive loading improves cycling capacity: a placebo controlled trial. Br J Sport Med 38(6):730–736. https://doi.org/10.1136/bjsm.2003.007518

    Article  CAS  Google Scholar 

  35. Goldman RF, Iampietro PF (1962) Energy cost of load carriage. J Appl Physiol 17(4):675–676

    CAS  PubMed  Google Scholar 

  36. Grenier JG, Peyrot N, Castells J, Oullion R, Messonnier L, Morin JB (2012) Energy cost and mechanical work of walking during load carriage in soldiers. Med Sci Sports Exerc 44(6):1131–1140. https://doi.org/10.1249/MSS.0b013e3182456057

    Article  PubMed  Google Scholar 

  37. Guenette JA, Sheel AW (2007) Physiological consequences of a high work of breathing during heavy exercise in humans. J Sci Med Sport 10(6):341–350. https://doi.org/10.1016/j.jsams.2007.02.003

    Article  CAS  PubMed  Google Scholar 

  38. Guenette JA, Witt JD, McKenzie DC, Road JD, Sheel AW (2007) Respiratory mechanics during exercise in endurance-trained men and women. J Physiol 581(3):1309–1322. https://doi.org/10.1113/jphysiol.2006.126466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hamilton P, Andrew GM (1976) Influence of growth and athletic training on heart and lung functions. Eur J Appl Physiol Occup Physiol 36(1):27–38. https://doi.org/10.1007/BF00421631

    Article  CAS  PubMed  Google Scholar 

  40. Hanson P, Claremont A, Dempsey J, Reddan W (1982) Determinants and consequences of ventilatory responses to competitive endurance running. J Appl Physiol 52(3):615–623

    CAS  PubMed  Google Scholar 

  41. Harms CA (2007) Insights into the role of the respiratory muscle metaboreflex. J Physiol 584(3):711. https://doi.org/10.1113/jphysiol.2007.145540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Harms CA, Babcock MA, McClaran SR, Pegelow DF, Nickele GA, Nelson WB, Dempsey JA (1997) Respiratory muscle work compromises leg blood flow during maximal exercise. J Appl Physiol 82(5):1573–1583

    CAS  PubMed  Google Scholar 

  43. Harms CA, Wetter TJ, McClaran SR, Pegelow DF, Nickele GA, Nelson WB, Hanson P, Dempsey JA (1998) Effects of respiratory muscle work on cardiac output and its distribution during maximal exercise. J Appl Physiol 85(2):609–618

    CAS  PubMed  Google Scholar 

  44. Harms CA, Wetter TJ, St. Croix CM, Pegelow DF, Dempsey JA (2000) Effects of respiratory muscle work on exercise performance. J Appl Physiol 89(1):131–138

    CAS  PubMed  Google Scholar 

  45. Henke KG, Sharratt M, Pegelow D, Dempsey JA (1988) Regulation of end-expiratory lung volume during exercise. J Appl Physiol 64(1):135–146

    CAS  PubMed  Google Scholar 

  46. Hill JM (2000) Discharge of group IV phrenic afferent fibers increases during diaphragmatic fatigue. Brain Res 856(1–2):240–244. https://doi.org/10.1016/S0006-8993(99)02366-5

    Article  CAS  PubMed  Google Scholar 

  47. Holm P, Sattler A, Fregosi R (2004) Endurance training of respiratory muscles improves cycling performance in fit young cyclists. BMC Physiol 4(1):1–14. https://doi.org/10.1186/1472-6793-4-9

    Article  Google Scholar 

  48. Huang CH, Martin AD, Davenport PW (2003) Effect of inspiratory muscle strength training on inspiratory motor drive and RREP early peak components. J Appl Physiol 94(2):462–468. https://doi.org/10.1152/japplphysiol.00364.2002

    Article  PubMed  Google Scholar 

  49. Huang T-wP, Kuo AD (2014) Mechanics and energetics of load carriage during human walking. J Exp Biol 217(4):605–613. https://doi.org/10.1242/jeb.091587

    Article  PubMed  PubMed Central  Google Scholar 

  50. Illi S, Held U, Frank I, Spengler C (2012) Effect of respiratory muscle training on exercise performance in healthy individuals. Sports Med 42(8):707–724. https://doi.org/10.1007/BF03262290

    Article  PubMed  Google Scholar 

  51. Janssens L, Brumagne S, McConnell AK, Raymaekers J, Goossens N, Gayan-Ramirez G, Hermans G, Troosters T (2013) The assessment of inspiratory muscle fatigue in healthy individuals: a systematic review. Respir Med 107(3):331–346. https://doi.org/10.1016/j.rmed.2012.11.019

    Article  PubMed  Google Scholar 

  52. Jenkins SC, Moxham J (1991) The effects of mild obesity on lung function. Respir Med 85(4):309–311. https://doi.org/10.1016/S0954-6111(06)80102-2

    Article  CAS  PubMed  Google Scholar 

  53. Johnson BD, Babcock MA, Suman OE, Dempsey JA (1993) Exercise-induced diaphragmatic fatigue in healthy humans. J Physiol 460(1):385–405. https://doi.org/10.1113/jphysiol.1993.sp019477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Johnson BD, Saupe KW, Dempsey JA (1992) Mechanical constraints on exercise hyperpnea in endurance athletes. J Appl Physiol 73(3):874–886

    CAS  PubMed  Google Scholar 

  55. Johnson BD, Weisman IM, Zeballos RJ, Beck KC (1999) Emerging concepts in the evaluation of ventilatory limitation during exercise: the exercise tidal flow-volume loop. Chest 116(2):488–503. https://doi.org/10.1378/chest.116.2.488

    Article  CAS  PubMed  Google Scholar 

  56. Kabitz HJ, Walker D, Walterspacher S, Windisch W (2007) Controlled twitch mouth pressure reliably predicts twitch esophageal pressure. Respir Physiol Neurobiol 156(3):276–282. https://doi.org/10.1016/j.resp.2006.10.007

    Article  PubMed  Google Scholar 

  57. Kayser B (2003) Exercise starts and ends in the brain. Eur J Appl Physiol 90(3–4):411–419. https://doi.org/10.1007/s00421-003-0902-7

    Article  PubMed  Google Scholar 

  58. Kilding A, Brown S, McConnell A (2010) Inspiratory muscle training improves 100 and 200 m swimming performance. Eur J Appl Physiol 108(3):505–511. https://doi.org/10.1007/s00421-009-1228-x

    Article  PubMed  Google Scholar 

  59. Knapik J, Harman E, Reynolds K (1996) Load carriage using packs: a review of physiological, biomechanical and medical aspects. Appl Ergon 27(3):207–216. https://doi.org/10.1016/0003-6870(96)00013-0

    Article  CAS  PubMed  Google Scholar 

  60. Leddy J, Limprasertkul A, Patel S, Modlich F, Buyea C, Pendergast D, Lundgren CG (2007) Isocapnic hyperpnea training improves performance in competitive male runners. Eur J Appl Physiol 99(6):665–676. https://doi.org/10.1007/s00421-006-0390-7

    Article  PubMed  Google Scholar 

  61. Legg SJ (1988) Influence of body armour on pulmonary function. Ergonomics 31(3):349–353. https://doi.org/10.1080/00140138808966679

    Article  CAS  PubMed  Google Scholar 

  62. Legg SJ, Cruz CO (2004) Effect of single and double strap backpacks on lung function. Ergonomics 47(3):318–323. https://doi.org/10.1080/0014013032000157878

    Article  CAS  PubMed  Google Scholar 

  63. Mainwood GW, Renaud JM (1985) The effect of acid–base balance on fatigue of skeletal muscle. Can J Physiol Pharm 63(5):403–416. https://doi.org/10.1139/y85-072

    Article  CAS  Google Scholar 

  64. Majumdar D, Srivastava KK, Purkayastha SS, Pichan G, Selvamurthy W (1997) Physiological effects of wearing heavy body armour on male soldiers. Int J Ind Ergon 20(2):155–161. https://doi.org/10.1016/S0169-8141(96)00057-1

    Article  Google Scholar 

  65. McConnell AK (2012) CrossTalk opposing view: respiratory muscle training does improve exercise tolerance. J Physiol 590(15):3397–3398. https://doi.org/10.1113/jphysiol.2012.235572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. McEntire SJ, Smith JR, Ferguson CS, Brown KR, Kurti SP, Harms CA (2016) The effect of exercise training with an additional inspiratory load on inspiratory muscle fatigue and time-trial performance. Respir Physiol Neurobiol 230:54–59. https://doi.org/10.1016/j.resp.2016.05.001

    Article  PubMed  Google Scholar 

  67. McMahon ME, Boutellier U, Smith RM, Spengler CM (2002) Hyperpnea training attenuates peripheral chemosensitivity and improves cycling endurance. J Exp Biol 205(24):3937–3943

    PubMed  Google Scholar 

  68. Mickleborough T, Stager J, Chatham K, Lindley M, Ionescu A (2008) Pulmonary adaptations to swim and inspiratory muscle training. Eur J Appl Physiol 103(6):635–646. https://doi.org/10.1007/s00421-008-0759-x

    Article  PubMed  Google Scholar 

  69. Mickleborough TD, Nichols T, Lindley MR, Chatham K, Ionescu AA (2010) Inspiratory flow resistive loading improves respiratory muscle function and endurance capacity in recreational runners. Scan J Med Sci Sports 20(3):458–468. https://doi.org/10.1111/j.1600-0838.2009.00951.x

    Article  CAS  Google Scholar 

  70. Milic-Emili J, Mead J, Turner JM, Glauser EM (1964) Improved technique for estimating pleural pressure from esophageal balloons. J Appl Physiol 19(2):207–211

    CAS  PubMed  Google Scholar 

  71. Miller JD, Beck KC, Joyner MJ, Brice AG, Johnson BD (2002) Cardiorespiratory effects of inelastic chest wall restriction. J Appl Physiol 92(6):2419–2428. https://doi.org/10.1152/japplphysiol.00394.2001

    Article  PubMed  Google Scholar 

  72. Muza SR, Latzka WA, Epstein Y, Pandolf KB (1989) Load carriage induced alterations of pulmonary function. Int J Ind Ergon 3(3):221–227. https://doi.org/10.1016/0169-8141(89)90021-8

    Article  Google Scholar 

  73. Noakes TD (2012) Fatigue is a brain-derived emotion that regulates the exercise behavior to ensure the protection of whole body homeostasis. Front Physiol 3(82):1–13

    Google Scholar 

  74. Noakes TD, St Clair Gibson A (2004) Logical limitations to the “catastrophe” models of fatigue during exercise in humans. Br J Sport Med 38:648–649

    Article  CAS  Google Scholar 

  75. Noakes TD, St Clair Gibson A, Lambert EV (2005) From catastrophe to complexity: a novel model of integrative central neural regulation of effort and fatigue during exercise in humans: summary and conclusions. Br J Sport Med 39:120–124

    Article  CAS  Google Scholar 

  76. O’Donnell DE, Hong HH, Webb KA (2000) Respiratory sensation during chest wall restriction and dead space loading in exercising men. J Appl Physiol 88(5):1859–1869

    PubMed  Google Scholar 

  77. Olfert IM (2016) Exercise and the lungs: nature or nurture? J Physiol 594(18):5037–5038. https://doi.org/10.1113/JP272370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Patel MS, Hart N, Polkey MI (2012) CrossTalk proposal: training the respiratory muscles does not improve exercise tolerance. J Physiol 590(15):3393–3395. https://doi.org/10.1113/jphysiol.2012.235408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Peoples GE, Lee DS, Notley SR, Taylor NAS (2016) The effects of thoracic load carriage on maximal ambulatory work tolerance and acceptable work durations. Eur J Appl Physiol 116(3):635–646. https://doi.org/10.1007/s00421-015-3323-5

    Article  Google Scholar 

  80. Phillips DB, Stickland MK, Petersen SR (2016) Ventilatory responses to prolonged exercise with heavy load carriage. Eur J Appl Physiol 116(1):19–27. https://doi.org/10.1007/s00421-015-3240-7

    Article  PubMed  Google Scholar 

  81. Phillips DB, Stickland MK, Lesser IA, Petersen SR (2016) The effects of heavy load carriage on physiological responses to graded exercise. Eur J Appl Physiol 116(2):275–280. https://doi.org/10.1007/s00421-015-3280-z

    Article  CAS  PubMed  Google Scholar 

  82. Phillips DB, Ehnes CM, Stickland MK, Petersen SR (2016) The impact of thoracic load carriage up to 45 kg on the cardiopulmonary response to exercise. Eur J Appl Physiol 116(9):1725–1734. https://doi.org/10.1007/s00421-016-3427-6

    Article  PubMed  Google Scholar 

  83. Phillips DB, Stickland MK, Petersen SR (2016) Physiological and performance consequences of heavy thoracic load carriage in females. Appl Physiol Nutr Metab 41(7):741–748. https://doi.org/10.1139/apnm-2016-0002

    Article  CAS  PubMed  Google Scholar 

  84. Prefaut C, Durand F, Mucci P, Caillaud C (2000) Exercise-induced arterial hypoxaemia in athletes. Sports Med 30(1):47–61. https://doi.org/10.2165/00007256-200030010-00005

    Article  CAS  PubMed  Google Scholar 

  85. Prigent H, Orlikowski D, Fermanian C, Lejaille M, Falaize L, Louis A, Faroux B, Lofaso F (2008) Sniff and Muller manoeuvres to measure diaphragmatic muscle strength. Respir Med 102(12):1737–1743. https://doi.org/10.1016/j.rmed.2008.07.004

    Article  PubMed  Google Scholar 

  86. Pringle JS, Doust JH, Carter H, Tolfrey K, Campbell IT, Sakkas GK, Jones AM (2003) Oxygen uptake kinetics during moderate, heavy and severe intensity “submaximal” exercise in humans: the influence of muscle fibre type and capillarisation. Eur J Appl Physiol 89(3–4):289–300. https://doi.org/10.1007/s00421-003-0799-1

    Article  PubMed  Google Scholar 

  87. Ramírez-Sarmiento A, Orozco-Levi M, Güell R, Barreiro E, Hernandez N, Mota S, Sangenis M, Broquetas JM, Casan P, Gea J (2002) Inspiratory muscle training in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 166(11):1491–1497. https://doi.org/10.1164/rccm.200202-075OC

    Article  PubMed  Google Scholar 

  88. Ricciardi R, Deuster PA, Talbot LA (2008) Metabolic demands of body armor on physical performance in simulated conditions. Mil Med 173(9):817–824

    Article  PubMed  Google Scholar 

  89. Rodman JR, Henderson KS, Smith CA, Dempsey JA (2003) Cardiovascular effects of the respiratory muscle metaboreflexes in dogs: rest and exercise. J Appl Physiol 95(3):1159–1169. https://doi.org/10.1152/japplphysiol.00258.2003

    Article  PubMed  Google Scholar 

  90. Romer LM, Haverkamp HC, Lovering AT, Pegelow DF, Dempsey JA (2006) Effect of exercise-induced arterial hypoxemia on quadriceps muscle fatigue in healthy humans. Am J Physiol 290(2):R365–R375. https://doi.org/10.1152/ajpregu.00332.2005

    CAS  Google Scholar 

  91. Romer LM, McConnell AK (2003) Specificity and reversibility of inspiratory muscle training. Med Sci Sports Exerc 35(2):237–244

    Article  PubMed  Google Scholar 

  92. Romer LM, McConnell AK, Jones DA (2002) Effects of inspiratory muscle training on time-trial performance in trained cyclists. J Sport Sci 20(7):547–590. https://doi.org/10.1080/026404102760000053

    Article  Google Scholar 

  93. Romer LM, McConnell AK, Jones DA (2002) Inspiratory muscle fatigue in trained cyclists: effects of inspiratory muscle training. Med Sci Sports Exerc 34(5):785–792

    Article  PubMed  Google Scholar 

  94. Romer LM, Polkey MI (2008) Exercise-induced respiratory muscle fatigue: implications for performance. J Appl Physiol 104(3):879–888. https://doi.org/10.1152/japplphysiol.01157.2007

    Article  PubMed  Google Scholar 

  95. Roussos C, Fixley M, Gross D, Macklem PT (1979) Fatigue of inspiratory muscles and their synergic behavior. J Appl Physiol 46(5):897–904

    CAS  PubMed  Google Scholar 

  96. Sharp JT, Barrocas M, Chokroverty S (1980) The cardiorespiratory effects of obesity. Clin Chest Med 1(1):103–118

    CAS  PubMed  Google Scholar 

  97. Sharratt MT, Henke KG, Aaron EA, Pegelow DF, Dempsey JA (1987) Exercise-induced changes in functional residual capacity. Respir Physiol 70(3):313–326. https://doi.org/10.1016/0034-5687(87)90013-2

    Article  CAS  PubMed  Google Scholar 

  98. Sheel AW (2002) Respiratory muscle training in healthy individuals. Sports Med 32(9):567–581. https://doi.org/10.2165/00007256-200232090-00003

    Article  PubMed  Google Scholar 

  99. Sheel AW, Derchak PA, Morgan BJ, Pegelow DF, Jacques AJ, Dempsey JA (2001) Fatiguing inspiratory muscle work causes reflex reduction in resting leg blood flow in humans. J Physiol 537(1):277–289. https://doi.org/10.1111/j.1469-7793.2001.0277k.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Shei R-J, Mickleborough TD (2013) Relative contributions of central and peripheral factors in human muscle fatigue during exercise: a brief review. J Exerc Physiol 16(6):1–17

    Google Scholar 

  101. Shei R-J, Paris HLR, Wilhite DP, Chapman RF, Mickleborough TD (2016) The role of inspiratory muscle training in the management of asthma and exercise-induced bronchoconstriction. Phys Sportsmed 44(4):327–334. https://doi.org/10.1080/00913847.2016.1176546

    Article  PubMed  Google Scholar 

  102. Shei R-J, Lindley M, Chatham K, Mickleborough TD (2016) Effect of flow-resistive inspiratory loading on pulmonary and respiratory muscle function in sub-elite swimmers. J Sports Med Phys Fitness 56(4):392–398

    PubMed  Google Scholar 

  103. Shirley D, Hodges PW, Eriksson AEM, Gandevia SC (2003) Spinal stiffness changes throughout the respiratory cycle. J Appl Physiol 95(4):1467–1475. https://doi.org/10.1152/japplphysiol.00939.2002

    Article  CAS  PubMed  Google Scholar 

  104. Silva IS, Fregonezi GA, Dias FA, Ribeiro CT, Guerra RO, Ferreira GM (2013) Inspiratory muscle training for asthma. Cochrane Database Syst Rev 9:003792. https://doi.org/10.1002/14651858.cd003792.pub2

    Google Scholar 

  105. Sperlich PB, Fricke H, de Marées M, Linville JW, Mester J (2009) Does respiratory muscle training increase physical performance? Mil Med 174(9):977–982

    Article  PubMed  Google Scholar 

  106. St Clair Gibson A, Noakes TD (2004) Evidence for complex system integration and dynamic neural regulation of skeletal muscle recruitment during exercise in humans. Br J Sport Med 38:797–806

    Article  CAS  Google Scholar 

  107. Taylor NAS, Lewis MC, Notley SR, Peoples GE (2012) A fractionation of the physiological burden of the personal protective equipment worn by firefighters. Eur J Appl Physiol 112(8):2913–2921. https://doi.org/10.1007/s00421-011-2267-7

    Article  Google Scholar 

  108. Taylor NAS, Peoples GE, Petersen SR (2016) Load carriage, human performance, and employment standards. Appl Physiol Nutr Metab 41(6):S131–S147. https://doi.org/10.1139/apnm-2015-0486

    Google Scholar 

  109. Tomczak SE, Guenette JA, Reid WD, McKenzie DC, Sheel AW (2011) Diaphragm fatigue after submaximal exercise with chest wall restriction. Med Sci Sports Exerc 43(3):416–424. https://doi.org/10.1249/MSS.0b013e3181ef5e67

    Article  PubMed  Google Scholar 

  110. Turner LA, Mickleborough TD, McConnell AK, Stager JM, Tecklenburg-Lund S, Lindley MR (2011) Effect of inspiratory muscle training on exercise tolerance in asthmatic individuals. Med Sci Sports Exerc 43(11):2031–2038. https://doi.org/10.1249/MSS.0b013e31821f4090

    Article  PubMed  Google Scholar 

  111. Turner LA, Tecklenburg-Lund SL, Chapman RF, Stager JM, Wilhite DP, Mickleborough TD (2012) Inspiratory muscle training lowers the oxygen cost of voluntary hyperpnea. J Appl Physiol 112(1):127–134. https://doi.org/10.1152/japplphysiol.00954.2011

    Article  PubMed  Google Scholar 

  112. Verges S, Lenherr O, Haner AC, Schulz C, Spengler CM (2007) Increased fatigue resistance of respiratory muscles during exercise after respiratory muscle endurance training. Am J Physiol 292(3):R1246–R1253. https://doi.org/10.1152/ajpregu.00409.2006

    CAS  Google Scholar 

  113. Verges S, Notter D, Spengler CM (2006) Influence of diaphragm and rib cage muscle fatigue on breathing during endurance exercise. Respir Physiol Neurobiol 154(3):431–442. https://doi.org/10.1016/j.resp.2005.12.007

    Article  PubMed  Google Scholar 

  114. Verges S, Renggli AS, Notter DA, Spengler CM (2009) Effects of different respiratory muscle training regimes on fatigue-related variables during volitional hyperpnoea. Respir Physiol Neurobio 169(3):282–290. https://doi.org/10.1016/j.resp.2009.09.005

    Article  Google Scholar 

  115. Volianitis S, McConnell AK, Koutedakis Y, McNaughton L, Backx K, Jones DA (2001) Inspiratory muscle training improves rowing performance. Med Sci Sports Exerc 33(5):803–809

    Article  CAS  PubMed  Google Scholar 

  116. Walker RE, Swain DP, Ringleb SI, Colberg SR (2015) Effect of added mass on treadmill performance and pulmonary function. J Strength Cond Res 29(4):882–888. https://doi.org/10.1519/JSC.0000000000000408

    Article  PubMed  Google Scholar 

  117. Weavil JC, Duke JW, Stickford JL, Stager JM, Chapman RF, Mickleborough TD (2015) Endurance exercise performance in acute hypoxia is influenced by expiratory flow limitation. Eur J Appl Physiol 115(8):1653–1663. https://doi.org/10.1007/s00421-015-3145-5

    Article  PubMed  Google Scholar 

  118. Witt JD, Guenette JA, Rupert JL, McKenzie DC, Sheel AW (2007) Inspiratory muscle training attenuates the human respiratory muscle metaboreflex. J Physiol 584(3):1019–1028. https://doi.org/10.1113/jphysiol.2007.140855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Wüthrich TU, Eberle E, Spengler CM (2014) Locomotor and diaphragm muscle fatigue in endurance athletes performing time-trials of different durations. Eur J Appl Physiol 114(8):1619–1633. https://doi.org/10.1007/s00421-014-2889-7

    Article  PubMed  Google Scholar 

  120. Wüthrich TU, Marty J, Kerherve H, Millet GY, Verges S, Spengler CM (2015) Aspects of respiratory muscle fatigue in a mountain ultramarathon race. Med Sci Sports Exerc 47(3):519–527. https://doi.org/10.1249/MSS.0000000000000449

    Article  PubMed  Google Scholar 

  121. Wylegala J, Pendergast D, Gosselin L, Warkander D, Lundgren CG (2007) Respiratory muscle training improves swimming endurance in divers. Eur J Appl Physiol 99(4):393–404. https://doi.org/10.1007/s00421-006-0359-6

    Article  PubMed  Google Scholar 

  122. Younes M, Kivinen G (1984) Respiratory mechanics and breathing pattern during and following maximal exercise. J Appl Physiol 57(6):1773–1782

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

R.-J.S. is supported by 5T32HL105346-08 from the National Heart, Lung, and Blood Institute (NHLBI) of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ren-Jay Shei.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Endorsed by Timothy D. Mickleborough.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shei, RJ., Chapman, R.F., Gruber, A.H. et al. Respiratory Effects of Thoracic Load Carriage Exercise and Inspiratory Muscle Training as a Strategy to Optimize Respiratory Muscle Performance with Load Carriage. Springer Science Reviews 5, 49–64 (2017). https://doi.org/10.1007/s40362-017-0046-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40362-017-0046-5

Keywords

Navigation