Abstract
Local-scale flooding (LSF) is usually characterized by much less severe damage compared to extreme flood events; however, it does have marked local environmental influence, especially when it is characterized by regular and frequent occurrence and long duration. Knowledge about the spatial extent of flood-prone areas is essential for flood risk and land management purposes, spatial planning, or emergency response. Flood mapping procedures have been supported by remote sensing for several decades, and progress in remote sensing technology and image processing over the last two decades has made flood extent analysis possible at an unprecedented level of detail. Here we provide an overview of applications of remote sensing technologies for analyzing the extent of flood events and discuss their applicability for LSF. We report on applications of data from the optical visible and reflective infrared spectrum, active microwave spectrum, and airborne laser scanning technology. Additionally, applications of elevation data supporting flood extent mapping are reviewed. The review reveals that in general remote sensing techniques and data types are likely to have similar capabilities and limitations for analyzing LSF as they have for extreme floods. However, data from many current remote sensing sensors are inadequate for LSF analysis, since very high spatial resolution data are required for mapping localized flooding. Finally, airborne laser scanning is found to be an emerging and promising technology in flood-related water surface analysis.
This is a preview of subscription content, access via your institution.



COSMO-SkyMed Image ©ASI. All rights reserved

By courtesy of earthobservatory.nasa.gov

References
Alsdorf DE, Rodríguez E, Lettenmaier DP (2007) Measuring surface water from space. Rev Geophys 45:RG2002. doi:10.1029/2006rg000197
Andresen T, Mott C, Zimmermann S, Schneider T, Melzer A (2002) Object-oriented information extraction for the monitoring of sensitive aquatic environments. In: IGARSS ‘02. pp 3083–3085
Antonarakis AS, Richards KS, Brasington J (2008) Object-based land cover classification using airborne LiDAR. Remote Sens Environ 112:2988–2998. doi:10.1016/j.rse.2008.02.004
Arnesen AS, Silva TSF, Hess LL, Novo EMLM, Rudorff CM, Chapman BD, McDonald KC (2013) Monitoring flood extent in the lower Amazon River floodplain using ALOS/PALSAR ScanSAR images. Remote Sens Environ 130:51–61. doi:10.1016/j.rse.2012.10.035
Baatz M, Schäpe A (2000) Multiresolution segmentation: an optimization approach for high quality multi-scale image segmentation. Angew Geogr informationsverarbeitung 12:12–23
Barredo J (2007) Major flood disasters in Europe: 1950–2005. Nat Hazards 42:125–148. doi:10.1007/s11069-006-9065-2
Bates PD, Wilson MD, Horritt MS, Mason DC, Holden N, Currie A (2006) Reach scale floodplain inundation dynamics observed using airborne synthetic aperture radar imagery: data analysis and modelling. J Hydrol 328:306–318. doi:10.1016/j.jhydrol.2005.12.028
Blaschke T (2010) Object based image analysis for remote sensing. ISPRS J Photogramm 65:2–16. doi:10.1016/j.isprsjprs.2009.06.004
Brennan R, Webster TL (2006) Object-oriented land cover classification of lidar-derived surfaces. Can J Remote Sens 32:162–172. doi:10.5589/m06-015
Bretar F (2009) Feature extraction from LiDAR data in urban areas. In: Shan J, Toth CK (eds) Topographic laser ranging and scanning: principles and processing. CRC Press Taylor and Francis Group, Boca Raton, pp 403–419
Brivio PA, Colombo R, Maggi M, Tomasoni R (2002) Integration of remote sensing data and GIS for accurate mapping of flooded areas. Int J Remote Sens 23:429–441
Brzank A, Heipke C, Goepfert J, Soergel U (2008) Aspects of generating precise digital terrain models in the Wadden Sea from lidar–water classification and structure line extraction. ISPRS J Photogramm 63:510–528. doi:10.1016/j.isprsjprs.2008.02.002
Burnett C, Aaviksoo K, Lang S, Langanke T, Blaschke T (2003) An object-based methodology for mapping mires using high resolution imagery. In: Ecohydrological processes in Northern Wetlands, Tallinn. pp 239–244
Chesnaud C, Refregier P, Boulet V (1999) Statistical region snake-based segmentation adapted to different physical noise models. IEEE Trans Pattern Anal Mach Intell 21:1145–1157. doi:10.1109/34.809108
Chormanski J, Okruszko T, Ignar S, Batelaan O, Rebel KT, Wassen MJ (2011) Flood mapping with remote sensing and hydrochemistry: a new method to distinguish the origin of flood water during floods. Ecol Eng 37:1334–1349. doi:10.1016/j.ecoleng.2011.03.016
Collin A, Long B, Archambault P (2010) Salt-marsh characterization, zonation assessment and mapping through a dual-wavelength LiDAR. Remote Sens Environ 114:520–530. doi:10.1016/j.rse.2009.10.011
Congalton RG, Green K (2009) Assessing the accuracy of remotely sensed data: principles and practices. CRC Press, Boca Raton
Copernicus (2016) Copernicus—The European Earth Observation Programme Website. European commission. http://ec.europa.eu/growth/sectors/space/copernicus/index_en.htm. Accessed 10 Feb 2016
Corr DG, Keyte GE, Whitehouse S (1995) Studies of decorrelation in multi-temporal SAR imagery. In: Geoscience and Remote Sensing Symposium, 1995. IGARSS ‘95. ‘Quantitative Remote Sensing for Science and Applications’, International, 10–14 Jul 1995. vol 1022, pp 1026–1028. doi:10.1109/igarss.1995.521128
Crasto N, Hopkinson C, Forbes DL, Lesack L, Marsh P, Spooner I, van der Sanden JJ (2015) A LiDAR-based decision-tree classification of open water surfaces in an Arctic delta Remote Sens Environ 164:90–102. doi:10.1016/j.rse.2015.04.011
Crist EP, Kauth RJ (1986) The Tassled Cap de-mystified. Photogrammetric Engineering & Remote Sensing 52:81–86
Davranche A, Poulin B, Lefebvre G (2013) Mapping flooding regimes in Camargue wetlands using seasonal multispectral data. Remote Sens Environ 138:165–171. doi:10.1016/j.rse.2013.07.015
De Groeve T (2010) Flood monitoring and mapping using passive microwave remote sensing in Namibia Geomatics. Natural Hazards Risk 1:19–35. doi:10.1080/19475701003648085
De Groeve T, Riva P (2009) Global real-time detection of major floods using passive microwave remote sensing. pp 1–4
De Moel H, Van Alphen J, Aerts JCJH (2009) Flood maps in Europe—methods, availability and use. Nat Hazards Earth Syst Sci 9:289–301. doi:10.5194/nhess-9-289-2009
De Roo A, Van Der Knijff J, Horritt M, Schmuck G, De Jong S (1999) Assessing flood damages of the 1997 Oder flood and the 1995 Meuse flood. In: Proceedings of the second international ITC symposium on operationalization of remote sensing, Enschede, The Netherlands, 16–20 Aug 1999
Dissanska M, Bernier M, Payette S (2009) Object-based classification of very high resolution panchromatic images for evaluating recent change in the structure of patterned peatlands. Can J Remote Sens 35:189–215. doi:10.5589/m09-002
EC (2007) Directive 2007/60/EC of the European Parliament and of the Council of 23 October 2007 on the assessment and management of flood risks. Official Journal of the European Communities 288/27
EM-DAT (2015) EM-DAT: the OFDA/CRED international disaster database. Université Catholique de Louvain. http://www.emdat.be/. Accessed 25 Feb 2015
EXCIMAP (2007) Handbook on good practices for flood mapping in Europe, European exchange circle on flood mapping
Feyisa GL, Meilby H, Fensholt R, Proud SR (2014) Automated water extraction index: a new technique for surface water mapping using Landsat imagery. Remote Sens Environ 140:23–35. doi:10.1016/j.rse.2013.08.029
Frazier PS, Page KJ (2000) Water body detection and delineation with Landsat TM data. Photogramm Eng Remote Sens 66:1461–1467
Grenier M, Demers A-M, Labrecque S, Benoit M, Fournier RA, Drolet B (2007) An object-based method to map wetland using RADARSAT-1 and Landsat ETM images: test case on two sites in Quebec, Canada. Can J Remote Sens 33:S28–S45. doi:10.5589/m07-048
Grenier M, Demers AM, Labrecque S, Benoit M, Fournier RA, Drolet B (2007) An object-based method to map wetland using RADARSAT-1 and Landsat ETM images: test case on two sites in Quebec. Canada Can J Remote Sens 33:S28–S45
Hagg W, Sties M (1998) Monitoring the Oder/Germany flood with ERS, RADARSAT and optical data. In: Geoscience and remote sensing symposium proceedings, 1998. IGARSS ‘98. 1998 IEEE International, 6–10 Jul 1998. vol 1613, pp 1614–1616. doi:10.1109/igarss.1998.691641
Hakala T, Suomalainen J, Kaasalainen S, Chen Y (2012) Full waveform hyperspectral LiDAR for terrestrial laser scanning. Opt Express 20:7119–7127
Hengl T (2006) Finding the right pixel size. Comput Geosci-UK 32:1283–1298. doi:10.1016/j.cageo.2005.11.008
Henry JB, Chastanet P, Fellah K, Desnos YL (2006) Envisat multi-polarized ASAR data for flood mapping. Int J Remote Sens 27:1921–1929. doi:10.1080/01431160500486724
Heremans R, Willekens A, Borghys D, Verbeeck B, Valckenborgh J, Acheroy M, Perneel C (2003) Automatic detection of flooded areas on ENVISAT/ASAR images using an object-oriented classification technique and an active contour algorithm. In: Proceedings of international conference on recent advances in space technologies, 2003. RAST ‘03., 20–22 Nov 2003. pp 311–316. doi:10.1109/rast.2003.1303926
Herrera-Cruz V, Koudogbo F, Herrera V (2009) TerraSAR-X rapid mapping for flood events. In: Proceedings of the international society for photogrammetry and remote sensing (earth imaging for geospatial information), Hannover, Germany. pp 170–175
Hirschboeck KK (1988) Flood hydroclimatology. In: Baker VR, Kochel RC, Patton PC (eds) Flood geomorphology. Wiley, New York, pp 27–49
Höfle B, Hollaus M, Hagenauer J (2012) Urban vegetation detection using radiometrically calibrated small-footprint full-waveform airborne LiDAR data. ISPRS J Photogramm 67:134–147. doi:10.1016/j.isprsjprs.2011.12.003
Höfle B, Pfeifer N (2007) Correction of laser scanning intensity data: Data and model-driven approaches. ISPRS J Photogramm 62:415–433. doi:10.1016/j.isprsjprs.2007.05.008
Höfle B, Vetter M, Pfeifer N, Mandlburger G, Stötter J (2009) Water surface mapping from airborne laser scanning using signal intensity and elevation data. Earth Surf Proc Land 34:1635–1649. doi:10.1002/esp.1853
Horritt M (1999) A statistical active contour model for SAR image segmentation. Image Vis Comput 17:213–224. doi:10.1016/s0262-8856(98)00101-2
Horritt MS, Mason DC, Luckman AJ (2001) Flood boundary delineation from Synthetic Aperture Radar imagery using a statistical active contour model. Int J Remote Sens 22:2489–2507. doi:10.1080/01431160116902
Hudson PF, Colditz RR (2003) Flood delineation in a large and complex alluvial valley, lower Pánuco basin. Mexico J Hydrol 280:229–245. doi:10.1016/S0022-1694(03)00227-0
Hyyppa J, Hyyppa H, Leckie D, Gougeon F, Yu X, Maltamo M (2008) Review of methods of small-footprint airborne laser scanning for extracting forest inventory data in boreal forests. Int J Remote Sens 29:1339–1366. doi:10.1080/01431160701736489
Jain SK, Singh RD, Jain MK, Lohani AK (2005) Delineation of flood-prone areas using remote sensing techniques. Water Resour Manage 19:333–347
Jansen LJM, Groom G, Carrai G (2008) Land-cover harmonisation and semantic similarity: some methodological issues. J Land Use Sci 3:131–160. doi:10.1080/17474230802332076
Jensen JR (2007) Remote sensing of the environment: an earth resource perspective. Prentice Hall series in geographic information science, 2nd edn. Pearson Prentice Hall, Upper Saddle River
Jiang Z, Qi J, Su S, Zhang Z, Wu J (2011) Water body delineation using index composition and HIS transformation. Int J Remote Sens 33:3402–3421. doi:10.1080/01431161.2011.614967
Kaartinen H et al (2012) An international comparison of individual tree detection and extraction using airborne laser scanning. Remote Sens-Basel 4:950–974
Kaasalainen S, Pyysalo U, Krooks A, Vain A, Kukko A, Hyyppa J, Kaasalainen M (2011) Absolute radiometric calibration of ALS intensity data: effects on accuracy and target classification. Sensors-Basel 11:10586–10602. doi:10.3390/S111110586
Kankaku Y, Osawa Y, Suzuki S, Watanabe T (2009) The overview of the L-band SAR onboard ALOS-2. In: Progress in electromagnetics research symposium, Moscow, Russia, 18–21 Aug 2009
Keshava N, Mustard JF (2002) Spectral unmixing. IEEE Signal Process Mag 19:44–57
Kraus K, Pfeifer N (1998) Determination of terrain models in wooded areas with airborne laser scanner data. ISPRS J Photogramm 53:193–203
Lang MW, McCarty GW (2009) Lidar intensity for improved detection of inundation below the forest canopy. Wetlands 29:1166–1178
LDCM (2015) Landsat Data Continuity Mission (LDCM)—Landsat 8. United States Geological Survey. http://landsat.usgs.gov/landsat8.php. Accessed 20 Mar 2015
Li W et al (2013) A Comparison of land surface water mapping using the normalized difference water index from TM, ETM + and ALI. Remote Sens-Basel 5:5530
Lu SL, Wu BF, Yan NN, Wang H (2011) Water body mapping method with HJ-1A/B satellite imagery. Int J Appl Earth Obs 13:428–434. doi:10.1016/j.jag.2010.09.006
Malinowski R, Groom G, Schwanghart W, Heckrath G (2015) Detection and delineation of localized flooding from WorldView-2 multispectral data. Remote Sens-Basel 7:14853–14875. doi:10.3390/rs71114853
Malinowski R, Höfle B, Koenig K, Groom G, Schwanghart W, Heckrath G (2016) Local-scale flood mapping on vegetated floodplains from radiometrically calibrated airborne LiDAR data. ISPRS J Photogramm 119:267–279. doi:10.1016/j.isprsjprs.2016.06.009
Mallinis G, Gitas IZ, Giannakopoulos V, Maris F, Tsakiri-Strati M (2011) An object-based approach for flood area delineation in a transboundary area using ENVISAT ASAR and LANDSAT TM data. Int J Digital Earth. doi:10.1080/17538947.2011.641601
Mandlburger G, Hauer C, Wieser M, Pfeifer N (2015) Topo-bathymetric LiDAR for monitoring river morphodynamics and instream habitats—a case study at the Pielach River. Remote Sens-Basel 7:6160–6195. doi:10.3390/rs70506160
Marcus WA, Fonstad MA (2008) Optical remote mapping of rivers at sub-meter resolutions and watershed extents. Earth Surf Proc Land 33:4–24. doi:10.1002/esp.1637
Mason DC, Horritt MS, Dall’Amico JT, Scott TR, Bates PD (2007) Improving river flood extent delineation from synthetic aperture radar using airborne laser altimetry. IEEE Trans Geosci Remote Sens 45:3932–3943. doi:10.1109/tgrs.2007.901032
Mason DC, Speck R, Devereux B, Schumann GJP, Neal JC, Bates PD (2010) Flood detection in urban areas using TerraSAR-X. IEEE Trans Geosci Remote Sens 48:882–894. doi:10.1109/tgrs.2009.2029236
McCoy RM (2004) Field methods in remote sensing. Guilford Press, New York
McFeeters SK (1996) The use of the normalized difference water index (NDWI) in the delineation of open water features. Int J Remote Sens 17:1425–1432. doi:10.1080/01431169608948714
Mercer B (2004) DEMs created from airborne IFSAR—an update In: International Archives of Photogrammetry and Remote Sensing, vol 35
Nico G, Pappalepore M, Pasquariello G, Refice A, Samarelli S (2000) Comparison of SAR amplitude vs. coherence flood detection methods—a GIS application. Int J Remote Sens 21:1619–1631. doi:10.1080/014311600209931
Otepka J, Ghuffar S, Waldhauser C, Hochreiter R, Pfeifer N (2013) Georeferenced point clouds: a survey of features and point cloud management. ISPRS Int J Geo-Inf 2:1038–1065
Otsu N (1979) A threshold selection method from gray-level histograms systems. IEEE Trans Man Cybern 9:62–66. doi:10.1109/tsmc.1979.4310076
Ouma YO, Tateishi R (2006) A water index for rapid mapping of shoreline changes of five East African Rift Valley lakes: an empirical analysis using Landsat TM and ETM + data. Int J Remote Sens 27:3153–3181. doi:10.1080/01431160500309934
Pajares G (2015) Overview and current status of remote sensing applications based on unmanned aerial vehicles (UAVs). Photogramm Eng Remote Sens 81:281–329. doi:10.14358/PERS.81.4.281
Petrie G, Toth CK (2009) Introduction to laser ranging, profiling, and scanning. In: Shan J, Toth CK (eds) Topographic laser ranging and scanning: principles and processing. CRC Press Taylor and Francis Group, Boca Raton, pp 1–28
Pierdicca N, Chini M, Pulvirenti L, Macina F (2008) Integrating physical and topographic information into a fuzzy scheme to map flooded area by SAR. Sensors-Basel 8:4151–4164
Pierdicca N, Pulvirenti L, Chini M, Guerriero L, Candela L (2013) Observing floods from space: experience gained from COSMO-SkyMed observations. Acta Astronaut 84:122–133. doi:10.1016/j.actaastro.2012.10.034
Pulvirenti L, Chini M, Pierdicca N, Guerriero L, Ferrazzoli P (2011) Flood monitoring using multi-temporal COSMO-SkyMed data: Image segmentation and signature interpretation. Remote Sens Environ 115:990–1002. doi:10.1016/j.rse.2010.12.002
Pulvirenti L, Pierdicca N, Chini M, Guerriero L (2011) An algorithm for operational flood mapping from Synthetic Aperture Radar (SAR) data using fuzzy logic. Nat Hazards Earth Syst Sci 11:529–540. doi:10.5194/nhess-11-529-2011
Robertson LD, Douglas JK, Davies C (2011) Spatial analysis of wetlands at multiple scales in Eastern Ontario using remote sensing and GIS. In: 32nd Canadian symposium on remote sensing, Sherbrooke, Quebec, 13–16 June 2011
Rutzinger M, Hofle B, Hollaus M, Pfeifer N (2008) Object-based point cloud analysis of full-waveform airborne laser scanning data for urban vegetation classification. Sensors-Basel 8:4505–4528. doi:10.3390/S8084505
Sanyal J, Lu XX (2004) Application of remote sensing in flood management with special reference to monsoon Asia: a review. Nat Hazards 33:283–301
Schäfer ML, Lundström JO (2011) Detection of temporary flooded areas with potential floodwater mosquito production using imaging radar. Int J Remote Sens 33:1943–1953. doi:10.1080/01431161.2011.604053
Schmidt A, Rottensteiner F, Sörgel U (2013) Water-land-classification in coastal areas with full waveform lidar data. Photogramm Fernerkund Geoinf 2013:71–81
Schumann G, Bates PD, Horritt MS, Matgen P, Pappenberger F (2009) Progress in integration of remote sensing-derived flood extent and stage data and hydraulic models. Rev Geophys 47:RG4001. doi:10.1029/2008RG000274
Schumann G, Di Baldassarre G, Bates PD (2009) The utility of spaceborne radar to render flood inundation maps based on multialgorithm ensembles. IEEE Trans Geosci Remote Sens 47:2801–2807. doi:10.1109/tgrs.2009.2017937
Schumann GJP, Neal JC, Mason DC, Bates PD (2011) The accuracy of sequential aerial photography and SAR data for observing urban flood dynamics, a case study of the UK summer 2007 floods. Remote Sens Environ 115:2536–2546. doi:10.1016/j.rse.2011.04.039
Shahbazi M, Théau J, Ménard P (2014) Recent applications of unmanned aerial imagery in natural resource management. GISci Remote Sens 51:339–365. doi:10.1080/15481603.2014.926650
Shan J, Toth CK (2008) Topographic laser ranging and scanning: principles and processing. CRC Press, Boca Raton
Silva TF, Costa MF, Melack J, Novo ELM (2008) Remote sensing of aquatic vegetation: theory and applications. Environ Monit Assess 140:131–145. doi:10.1007/s10661-007-9855-3
Smeeckaert J, Mallet C, David N, Chehata N, Ferraz A (2013) Large-scale classification of water areas using airborne topographic lidar data. Remote Sens Environ 138:134–148. doi:10.1016/j.rse.2013.07.004
Smith LC (1997) Satellite remote sensing of river inundation area, stage, and discharge: a review. Hydrol Process 11:1427–1439
Thomas RF, Kingsford RT, Lu Y, Hunter SJ (2011) Landsat mapping of annual inundation (1979–2006) of the Macquarie Marshes in semi-arid Australia. Int J Remote Sens 32:4545–4569. doi:10.1080/01431161.2010.489064
Tuxen K, Kelly M (2008) Multi-scale functional mapping of tidal marsh vegetation using object-based image analysis. In: Blaschke T, Lang S, Hay G (eds) Object-based image analysis. Lecture Notes in geoinformation and cartography. Springer, Berlin, Heidelberg, pp 415–442. doi:10.1007/978-3-540-77058-9_23
Verstraeten G, Poesen J (1999) The nature of small-scale flooding, muddy floods and retention pond sedimentation in central Belgium. Geomorphology 29:275–292. doi:10.1016/S0169-555x(99)00020-3
Wagner W (2010) Radiometric calibration of small-footprint full-waveform airborne laser scanner measurements: Basic physical concepts. ISPRS J Photogramm 65:505–513. doi:10.1016/j.isprsjprs.2010.06.007
Wang Y (2002) Mapping extent of floods: what we have learned and how we can do better. Nat Hazards Rev 3:68–73. doi:10.1061/(asce)1527-6988(2002)3:2(68)
Wang Y, Hess LL, Filoso S, Melack JM (1995) Understanding the radar backscattering from flooded and nonflooded Amazonian forests: results from canopy backscatter modeling. Remote Sens Environ 54:324–332. doi:10.1016/0034-4257(95)00140-9
Xu HQ (2006) Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int J Remote Sens 27:3025–3033
Zwenzner H, Voigt S (2009) Improved estimation of flood parameters by combining space based SAR data with very high resolution digital elevation data. Hydrol Earth Syst Sci 13:567–576. doi:10.5194/hess-13-567-2009
Acknowledgements
The funding of this work for Radosław Malinowski, Geoff Groom and Goswin Heckrath, by a research grant from the Danish AgriFish Agency is gratefully acknowledged (Grant Number: 923063). Wolfgang Schwanghart acknowledges the support by the Potsdam Research Cluster for Georisk Analysis, Environmental Change and Sustainability (PROGRESS) for his contribution to this work.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Endorsed by Goswin Heckrath.
Rights and permissions
About this article
Cite this article
Malinowski, R., Groom, G.B., Heckrath, G. et al. Do Remote Sensing Mapping Practices Adequately Address Localized Flooding? A Critical Overview. Springer Science Reviews 5, 1–17 (2017). https://doi.org/10.1007/s40362-017-0043-8
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s40362-017-0043-8
Keywords
- Flood
- Inundation
- Landsat
- LiDAR
- Remote sensing
- SAR