Skip to main content

Advertisement

Log in

Breast cancer: treatment response assessment with FDG-PET/CT in the neoadjuvant and in the metastatic setting

  • Expert Review
  • Published:
Clinical and Translational Imaging Aims and scope Submit manuscript

Abstract

Purpose

Various treatment options are available for breast cancer in the neoadjuvant and in the metastatic setting. Early and accurate assessment can support treatment adaptation. This review aims to clarify the potential role of FDG-PET/CT to assess treatment response in breast cancer patients.

Methods

We performed a comprehensive literature review and assessment of research studies with the keywords “treatment response”, “breast cancer” and “FDG-PET/CT”.

Results

Of 589 references analyzed, 138 were kept in the final analysis. FDG-PET/CT could early evaluate the response to neoadjuvant treatment in breast cancer (with better sensitivity than specificity) but the evaluation methods differ between studies. Taking into account the primary tumor phenotype and the type of treatment can help to better homogenize the evaluation criteria. Taking into account tumor phenotype, FDG-PET/CT is promising to assess neoadjuvant treatment response early in triple-negative and in HER2-positive tumors. At the end of neoadjuvant treatment, FDG-PET/CT tends to underestimate residual disease. FDG-PET/CT is effective for evaluating systemic treatments in the metastatic setting. By providing both functional and morphological information, FDG-PET/CT is more useful than CT alone or than bone scintigraphy for assessing treatment response of bone metastases.

Conclusion

FDG-PET/CT may be offered for the early assessment of response to neoadjuvant therapy, particularly in triple-negative or HER2-positive tumors, but treatment modification on the basis of FDG-PET/CT is not currently recommended outside clinical studies. FDG-PET/CT may play an important role in monitoring treatment response in the metastatic setting (especially in bone metastases) and FDG-PET/CT is more helpful than conventional imaging (CE-CT and bone scan).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Arnold M, Morgan E, Rumgay H et al (2022) Current and future burden of breast cancer: global statistics for 2020 and 2040. Breast 66:15–23. https://doi.org/10.1016/j.breast.2022.08.010

    Article  PubMed  PubMed Central  Google Scholar 

  2. Falck A-K, Bendahl P-O, Chebil G et al (2013) Biomarker expression and St Gallen molecular subtype classification in primary tumours, synchronous lymph node metastases and asynchronous relapses in primary breast cancer patients with 10 years’ follow-up. Breast Cancer Res Treat 140:93–104. https://doi.org/10.1007/s10549-013-2617-8

    Article  PubMed  CAS  Google Scholar 

  3. Smith IC, Welch AE, Hutcheon AW et al (2000) Positron emission tomography using [(18)F]-fluorodeoxy-d-glucose to predict the pathologic response of breast cancer to primary chemotherapy. J Clin Oncol 18:1676–1688

    Article  PubMed  CAS  Google Scholar 

  4. Schelling M, Avril N, Nährig J et al (2000) Positron emission tomography using [(18)F]Fluorodeoxyglucose for monitoring primary chemotherapy in breast cancer. J Clin Oncol 18:1689–1695

    Article  PubMed  CAS  Google Scholar 

  5. Mankoff DA, Dunnwald LK, Gralow JR et al (2003) Changes in blood flow and metabolism in locally advanced breast cancer treated with neoadjuvant chemotherapy. J Nucl Med 44:1806–1814

    PubMed  Google Scholar 

  6. Rousseau C, Devillers A, Sagan C et al (2006) Monitoring of early response to neoadjuvant chemotherapy in stage II and III breast cancer by [18F]fluorodeoxyglucose positron emission tomography. J Clin Oncol 24:5366–5372. https://doi.org/10.1200/JCO.2006.05.7406

    Article  PubMed  Google Scholar 

  7. Berriolo-Riedinger A, Touzery C, Riedinger J-M et al (2007) [18F]FDG-PET predicts complete pathological response of breast cancer to neoadjuvant chemotherapy. Eur J Nucl Med Mol Imaging 34:1915–1924. https://doi.org/10.1007/s00259-007-0459-5

    Article  PubMed  CAS  Google Scholar 

  8. McDermott GM, Welch A, Staff RT et al (2007) Monitoring primary breast cancer throughout chemotherapy using FDG-PET. Breast Cancer Res Treat 102:75–84. https://doi.org/10.1007/s10549-006-9316-7

    Article  PubMed  CAS  Google Scholar 

  9. Dunnwald LK, Gralow JR, Ellis GK et al (2008) Tumor metabolism and blood flow changes by positron emission tomography: relation to survival in patients treated with neoadjuvant chemotherapy for locally advanced breast cancer. J Clin Oncol 26:4449–4457. https://doi.org/10.1200/JCO.2007.15.4385

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Schwarz-Dose J, Untch M, Tiling R et al (2009) Monitoring primary systemic therapy of large and locally advanced breast cancer by using sequential positron emission tomography imaging with [18F]fluorodeoxyglucose. J Clin Oncol 27:535–541. https://doi.org/10.1200/JCO.2008.17.2650

    Article  PubMed  Google Scholar 

  11. Kumar A, Kumar R, Seenu V et al (2009) The role of 18F-FDG PET/CT in evaluation of early response to neoadjuvant chemotherapy in patients with locally advanced breast cancer. Eur Radiol 19:1347–1357. https://doi.org/10.1007/s00330-009-1303-z

    Article  PubMed  Google Scholar 

  12. Duch J, Fuster D, Muñoz M et al (2009) 18F-FDG PET/CT for early prediction of response to neoadjuvant chemotherapy in breast cancer. Eur J Nucl Med Mol Imaging 36:1551–1557. https://doi.org/10.1007/s00259-009-1116-y

    Article  PubMed  CAS  Google Scholar 

  13. Schneider-Kolsky ME, Hart S, Fox J et al (2010) The role of chemotherapeutic drugs in the evaluation of breast tumour response to chemotherapy using serial FDG-PET. Breast Cancer Res 12:R37. https://doi.org/10.1186/bcr2591

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Keam B, Im S-A, Koh Y et al (2011) Early metabolic response using FDG PET/CT and molecular phenotypes of breast cancer treated with neoadjuvant chemotherapy. BMC Cancer 11:452. https://doi.org/10.1186/1471-2407-11-452

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Kolesnikov-Gauthier H, Vanlemmens L, Baranzelli M-C et al (2012) Predictive value of neoadjuvant chemotherapy failure in breast cancer using FDG-PET after the first course. Breast Cancer Res Treat 131:517–525. https://doi.org/10.1007/s10549-011-1832-4

    Article  PubMed  CAS  Google Scholar 

  16. Tateishi U, Miyake M, Nagaoka T et al (2012) Neoadjuvant chemotherapy in breast cancer: prediction of pathologic response with PET/CT and dynamic contrast-enhanced MR imaging-prospective assessment. Radiology 263:53–63. https://doi.org/10.1148/radiol.12111177

    Article  PubMed  Google Scholar 

  17. Andrade WP, Lima ENP, Osório CABT et al (2013) Can FDG-PET/CT predict early response to neoadjuvant chemotherapy in breast cancer? Eur J Surg Oncol 39:1358–1363. https://doi.org/10.1016/j.ejso.2013.08.025

    Article  PubMed  CAS  Google Scholar 

  18. Higuchi T, Fujimoto Y, Ozawa H et al (2019) Significance of metabolic tumor volume at baseline and reduction of mean standardized uptake value in 18F-FDG-PET/CT imaging for predicting pathological complete response in breast cancers treated with preoperative chemotherapy. Ann Surg Oncol 26:2175–2183. https://doi.org/10.1245/s10434-019-07325-8

    Article  PubMed  PubMed Central  Google Scholar 

  19. Tatar G, Özkul Ö, Alçin G (2022) The value of 18F-FDG PET/CT imaging in the evaluation of interim neoadjuvant chemotherapy response in locally advanced breast cancer. Mol Imaging Radionucl Ther 31:123–129. https://doi.org/10.4274/mirt.galenos.2022.44154

    Article  PubMed  PubMed Central  Google Scholar 

  20. Cochet A, Pigeonnat S, Khoury B et al (2012) Evaluation of breast tumor blood flow with dynamic first-pass 18F-FDG PET/CT: comparison with angiogenesis markers and prognostic factors. J Nucl Med 53:512–520. https://doi.org/10.2967/jnumed.111.096834

    Article  PubMed  CAS  Google Scholar 

  21. Hatt M, Groheux D, Martineau A et al (2013) Comparison between 18F-FDG PET image-derived indices for early prediction of response to neoadjuvant chemotherapy in breast cancer. J Nucl Med 54:341–349. https://doi.org/10.2967/jnumed.112.108837

    Article  PubMed  CAS  Google Scholar 

  22. Humbert O, Riedinger J-M, Vrigneaud J-M et al (2016) 18F-FDG PET-derived tumor blood flow changes after 1 cycle of neoadjuvant chemotherapy predicts outcome in triple-negative breast cancer. J Nucl Med 57:1707–1712. https://doi.org/10.2967/jnumed.116.172759

    Article  PubMed  CAS  Google Scholar 

  23. Humbert O, Lasserre M, Bertaut A et al (2018) Pattern of breast cancer blood flow and metabolism, assessed using dual-acquisition 18FDG PET: correlation with tumor phenotypic features and pathological response to neoadjuvant chemotherapy. J Nucl Med. https://doi.org/10.2967/jnumed.117.203075

    Article  PubMed  Google Scholar 

  24. Coudert B, Pierga J-Y, Mouret-Reynier M-A et al (2014) Use of [(18)F]-FDG PET to predict response to neoadjuvant trastuzumab and docetaxel in patients with HER2-positive breast cancer, and addition of bevacizumab to neoadjuvant trastuzumab and docetaxel in [(18)F]-FDG PET-predicted non-responders (AVATAXHER): an open-label, randomised phase 2 trial. Lancet Oncol 15:1493–1502. https://doi.org/10.1016/S1470-2045(14)70475-9

    Article  PubMed  CAS  Google Scholar 

  25. Pérez-García JM, Gebhart G, Ruiz Borrego M et al (2021) Chemotherapy de-escalation using an 18F-FDG-PET-based pathological response-adapted strategy in patients with HER2-positive early breast cancer (PHERGain): a multicentre, randomised, open-label, non-comparative, phase 2 trial. Lancet Oncol 22:858–871. https://doi.org/10.1016/S1470-2045(21)00122-4

    Article  PubMed  Google Scholar 

  26. Gennari A, Donati S, Salvadori B et al (2000) Role of 2-[18F]-fluorodeoxyglucose (FDG) positron emission tomography (PET) in the early assessment of response to chemotherapy in metastatic breast cancer patients. Clin Breast Cancer 1:156–161 (discussion 162–163)

    Article  PubMed  CAS  Google Scholar 

  27. Stafford SE, Gralow JR, Schubert EK et al (2002) Use of serial FDG PET to measure the response of bone-dominant breast cancer to therapy. Acad Radiol 9:913–921

    Article  PubMed  Google Scholar 

  28. Dose Schwarz J, Bader M, Jenicke L et al (2005) Early prediction of response to chemotherapy in metastatic breast cancer using sequential 18F-FDG PET. J Nucl Med 46:1144–1150

    PubMed  Google Scholar 

  29. Couturier O, Jerusalem G, N’Guyen J-M, Hustinx R (2006) Sequential positron emission tomography using [18F]fluorodeoxyglucose for monitoring response to chemotherapy in metastatic breast cancer. Clin Cancer Res 12:6437–6443. https://doi.org/10.1158/1078-0432.CCR-06-0383

    Article  PubMed  CAS  Google Scholar 

  30. Specht JM, Tam SL, Kurland BF et al (2007) Serial 2-[18F] fluoro-2-deoxy-d-glucose positron emission tomography (FDG-PET) to monitor treatment of bone-dominant metastatic breast cancer predicts time to progression (TTP). Breast Cancer Res Treat 105:87–94. https://doi.org/10.1007/s10549-006-9435-1

    Article  PubMed  Google Scholar 

  31. Du Y, Cullum I, Illidge TM, Ell PJ (2007) Fusion of metabolic function and morphology: sequential [18F]fluorodeoxyglucose positron-emission tomography/computed tomography studies yield new insights into the natural history of bone metastases in breast cancer. J Clin Oncol 25:3440–3447. https://doi.org/10.1200/JCO.2007.11.2854

    Article  PubMed  Google Scholar 

  32. Tateishi U, Gamez C, Dawood S et al (2008) Bone metastases in patients with metastatic breast cancer: morphologic and metabolic monitoring of response to systemic therapy with integrated PET/CT. Radiology 247:189–196. https://doi.org/10.1148/radiol.2471070567

    Article  PubMed  Google Scholar 

  33. Huyge V, Garcia C, Alexiou J et al (2010) Heterogeneity of metabolic response to systemic therapy in metastatic breast cancer patients. Clin Oncol (R Coll Radiol) 22:818–827. https://doi.org/10.1016/j.clon.2010.05.021

    Article  PubMed  CAS  Google Scholar 

  34. Mayer IA, Abramson VG, Isakoff SJ et al (2014) Stand up to cancer phase Ib study of pan-phosphoinositide-3-kinase inhibitor buparlisib with letrozole in estrogen receptor-positive/human epidermal growth factor receptor 2-negative metastatic breast cancer. J Clin Oncol 32:1202–1209. https://doi.org/10.1200/JCO.2013.54.0518

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Lin NU, Guo H, Yap JT et al (2015) Phase II study of lapatinib in combination with trastuzumab in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer: clinical outcomes and predictive value of early [18F]fluorodeoxyglucose positron emission tomography imaging (TBCRC 003). J Clin Oncol 33:2623–2631. https://doi.org/10.1200/JCO.2014.60.0353

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Al-Muqbel KM, Yaghan RJ (2016) Effectiveness of 18F-FDG-PET/CT vs bone scintigraphy in treatment response assessment of bone metastases in breast cancer. Medicine (Baltimore) 95:e3753. https://doi.org/10.1097/MD.0000000000003753

    Article  PubMed  Google Scholar 

  37. Pinker K, Riedl CC, Ong L et al (2016) The impact that number of analyzed metastatic breast cancer lesions has on response assessment by 18F-FDG PET/CT using PERCIST. J Nucl Med 57:1102–1104. https://doi.org/10.2967/jnumed.115.166629

    Article  PubMed  CAS  Google Scholar 

  38. Ulaner GA, Saura C, Piha-Paul SA et al (2019) Impact of FDG PET imaging for expanding patient eligibility and measuring treatment response in a genome-driven basket trial of the pan-HER kinase inhibitor, neratinib. Clin Cancer Res 25:7381–7387. https://doi.org/10.1158/1078-0432.CCR-19-1658

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Vogsen M, Bülow JL, Ljungstrøm L et al (2021) FDG-PET/CT for response monitoring in metastatic breast cancer: the feasibility and benefits of applying PERCIST. Diagnostics (Basel) 11:723. https://doi.org/10.3390/diagnostics11040723

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Kitajima K, Higuchi T, Yamakado K, Miyoshi Y (2022) Early assessment of tumor response using 18F-FDG PET/CT after one cycle of systemic therapy in patients with recurrent and metastatic breast cancer. Hell J Nucl Med 25:155–162. https://doi.org/10.1967/s002449912476

    Article  PubMed  Google Scholar 

  41. Mortazavi-Jehanno N, Giraudet A-L, Champion L et al (2012) Assessment of response to endocrine therapy using FDG PET/CT in metastatic breast cancer: a pilot study. Eur J Nucl Med Mol Imaging 39:450–460. https://doi.org/10.1007/s00259-011-1981-z

    Article  PubMed  CAS  Google Scholar 

  42. Taralli S, Lorusso M, Scolozzi V et al (2019) Response evaluation with 18F-FDG PET/CT in metastatic breast cancer patients treated with Palbociclib: first experience in clinical practice. Ann Nucl Med 33:193–200. https://doi.org/10.1007/s12149-018-01323-8

    Article  PubMed  CAS  Google Scholar 

  43. Seifert R, Küper A, Tewes M et al (2021) [18F]-fluorodeoxyglucose positron emission tomography/CT to assess the early metabolic response in patients with hormone receptor-positive HER2-negative metastasized breast cancer treated with cyclin-dependent 4/6 kinase inhibitors. Oncol Res Treat 44:400–407. https://doi.org/10.1159/000516422

    Article  PubMed  CAS  Google Scholar 

  44. Filizoglu N, Ozguven S, Erdil TY (2022) 18F-FDG PET/CT metabolic response with hormone receptor-positive, human epidermal growth factor receptor 2-negative breast cancer treated with cyclin-dependent 4/6 kinase inhibitors. Clin Nucl Med 47:e605–e606. https://doi.org/10.1097/RLU.0000000000004177

    Article  PubMed  Google Scholar 

  45. Groheux D, Hindie E (2021) Breast cancer: initial workup and staging with FDG PET/CT. Clin Transl Imaging. https://doi.org/10.1007/s40336-021-00426-z

    Article  PubMed  PubMed Central  Google Scholar 

  46. Salaün P-Y, Abgral R, Malard O et al (2020) Good clinical practice recommendations for the use of PET/CT in oncology. Eur J Nucl Med Mol Imaging 47:28–50. https://doi.org/10.1007/s00259-019-04553-8

    Article  PubMed  Google Scholar 

  47. Groheux D (2018) Role of fluorodeoxyglucose in breast cancer: treatment response. PET Clin 13:395–414. https://doi.org/10.1016/j.cpet.2018.02.003

    Article  PubMed  Google Scholar 

  48. Groheux D, Giacchetti S, Moretti J-L et al (2011) Correlation of high (18)F-FDG uptake to clinical, pathological and biological prognostic factors in breast cancer. Eur J Nucl Med Mol Imaging 38:426–435. https://doi.org/10.1007/s00259-010-1640-9

    Article  PubMed  Google Scholar 

  49. Buck A, Schirrmeister H, Kühn T et al (2002) FDG uptake in breast cancer: correlation with biological and clinical prognostic parameters. Eur J Nucl Med Mol Imaging 29:1317–1323. https://doi.org/10.1007/s00259-002-0880-8

    Article  PubMed  CAS  Google Scholar 

  50. Bos R, van Der Hoeven JJM, van Der Wall E et al (2002) Biologic correlates of (18)fluorodeoxyglucose uptake in human breast cancer measured by positron emission tomography. J Clin Oncol 20:379–387

    Article  PubMed  CAS  Google Scholar 

  51. Mohamadien NRA, Sayed MHM (2021) Correlation between semiquantitative and volumetric 18F-FDG PET/computed tomography parameters and Ki-67 expression in breast cancer. Nucl Med Commun 42:656–664. https://doi.org/10.1097/MNM.0000000000001376

    Article  PubMed  CAS  Google Scholar 

  52. Iqbal R, Mammatas LH, Aras T et al (2021) Diagnostic performance of [18F]FDG PET in staging grade 1–2 estrogen receptor positive breast cancer. Diagnostics (Basel) 11:1954. https://doi.org/10.3390/diagnostics11111954

    Article  PubMed  CAS  Google Scholar 

  53. Humbert O, Berriolo-Riedinger A, Cochet A et al (2014) Prognostic relevance at 5 years of the early monitoring of neoadjuvant chemotherapy using (18)F-FDG PET in luminal HER2-negative breast cancer. Eur J Nucl Med Mol Imaging 41:416–427. https://doi.org/10.1007/s00259-013-2616-3

    Article  PubMed  CAS  Google Scholar 

  54. Groheux D, Giacchetti S, Delord M et al (2015) Prognostic impact of 18F-FDG PET/CT staging and of pathological response to neoadjuvant chemotherapy in triple-negative breast cancer. Eur J Nucl Med Mol Imaging 42:377–385. https://doi.org/10.1007/s00259-014-2941-1

    Article  PubMed  CAS  Google Scholar 

  55. Kitajima K, Miyoshi Y, Sekine T et al (2021) Harmonized pretreatment quantitative volume-based FDG-PET/CT parameters for prognosis of stage I–III breast cancer: multicenter study. Oncotarget 12:95–105. https://doi.org/10.18632/oncotarget.27851

    Article  PubMed  PubMed Central  Google Scholar 

  56. Groheux D, Sanna A, Majdoub M et al (2015) Baseline tumor 18F-FDG uptake and modifications after 2 cycles of neoadjuvant chemotherapy are prognostic of outcome in ER+/HER2− breast cancer. J Nucl Med 56:824–831. https://doi.org/10.2967/jnumed.115.154138

    Article  PubMed  CAS  Google Scholar 

  57. Urso L, Evangelista L, Alongi P et al (2022) The value of semiquantitative parameters derived from 18F-FDG PET/CT for predicting response to neoadjuvant chemotherapy in a cohort of patients with different molecular subtypes of breast cancer. Cancers (Basel) 14:5869. https://doi.org/10.3390/cancers14235869

    Article  PubMed  CAS  Google Scholar 

  58. Fisher B, Bryant J, Wolmark N et al (1998) Effect of preoperative chemotherapy on the outcome of women with operable breast cancer. J Clin Oncol 16:2672–2685

    Article  PubMed  CAS  Google Scholar 

  59. Rastogi P, Anderson SJ, Bear HD et al (2008) Preoperative chemotherapy: updates of National Surgical Adjuvant Breast and Bowel Project Protocols B-18 and B-27. J Clin Oncol 26:778–785. https://doi.org/10.1200/JCO.2007.15.0235

    Article  PubMed  Google Scholar 

  60. Cortazar P, Zhang L, Untch M et al (2014) Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis. Lancet 384:164–172. https://doi.org/10.1016/S0140-6736(13)62422-8

    Article  PubMed  Google Scholar 

  61. Matuschek C, Jazmati D, Bölke E et al (2022) Post-neoadjuvant treatment strategies in breast cancer. Cancers (Basel) 14:1246. https://doi.org/10.3390/cancers14051246

    Article  PubMed  CAS  Google Scholar 

  62. Burcombe RJ, Makris A, Pittam M et al (2002) Evaluation of good clinical response to neoadjuvant chemotherapy in primary breast cancer using [18F]-fluorodeoxyglucose positron emission tomography. Eur J Cancer 38:375–379

    Article  PubMed  CAS  Google Scholar 

  63. Dose-Schwarz J, Tiling R, Avril-Sassen S et al (2010) Assessment of residual tumour by FDG-PET: conventional imaging and clinical examination following primary chemotherapy of large and locally advanced breast cancer. Br J Cancer 102:35–41. https://doi.org/10.1038/sj.bjc.6605427

    Article  PubMed  CAS  Google Scholar 

  64. Kitajima K, Nakatani K, Yamaguchi K et al (2018) Response to neoadjuvant chemotherapy for breast cancer judged by PERCIST—multicenter study in Japan. Eur J Nucl Med Mol Imaging 45:1661–1671. https://doi.org/10.1007/s00259-018-4008-1

    Article  PubMed  Google Scholar 

  65. Choi EK, Yoo IR, Kim SH et al (2018) The value of pre- and post-neoadjuvant chemotherapy F-18 FDG PET/CT scans in breast cancer: comparison with MRI. Acta Radiol 59:41–49. https://doi.org/10.1177/0284185117705011

    Article  PubMed  Google Scholar 

  66. Groheux D (2014) Predicting pathological complete response in breast cancer early. Lancet Oncol 15:1415–1416. https://doi.org/10.1016/S1470-2045(14)71020-4

    Article  PubMed  Google Scholar 

  67. Hindié E, Groheux D (2015) Pathological complete response in breast cancer. Lancet 385:114. https://doi.org/10.1016/S0140-6736(15)60017-4

    Article  PubMed  Google Scholar 

  68. Wang Y, Zhang C, Liu J, Huang G (2012) Is 18F-FDG PET accurate to predict neoadjuvant therapy response in breast cancer? A meta-analysis. Breast Cancer Res Treat 131:357–369. https://doi.org/10.1007/s10549-011-1780-z

    Article  PubMed  CAS  Google Scholar 

  69. Cheng X, Li Y, Liu B et al (2012) 18F-FDG PET/CT and PET for evaluation of pathological response to neoadjuvant chemotherapy in breast cancer: a meta-analysis. Acta Radiol 53:615–627. https://doi.org/10.1258/ar.2012.110603

    Article  PubMed  Google Scholar 

  70. Mghanga FP, Lan X, Bakari KH et al (2013) Fluorine-18 fluorodeoxyglucose positron emission tomography-computed tomography in monitoring the response of breast cancer to neoadjuvant chemotherapy: a meta-analysis. Clin Breast Cancer 13:271–279. https://doi.org/10.1016/j.clbc.2013.02.003

    Article  PubMed  Google Scholar 

  71. Tian F, Shen G, Deng Y et al (2017) The accuracy of (18)F-FDG PET/CT in predicting the pathological response to neoadjuvant chemotherapy in patients with breast cancer: a meta-analysis and systematic review. Eur Radiol. https://doi.org/10.1007/s00330-017-4831-y

    Article  PubMed  Google Scholar 

  72. Liu Q, Wang C, Li P et al (2016) The role of (18)F-FDG PET/CT and MRI in assessing pathological complete response to neoadjuvant chemotherapy in patients with breast cancer: a systematic review and meta-analysis. Biomed Res Int 2016:3746232. https://doi.org/10.1155/2016/3746232

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Han S, Choi JY (2020) Prognostic value of 18F-FDG PET and PET/CT for assessment of treatment response to neoadjuvant chemotherapy in breast cancer: a systematic review and meta-analysis. Breast Cancer Res 22:119. https://doi.org/10.1186/s13058-020-01350-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Groheux D, Majdoub M, Sanna A et al (2015) Early metabolic response to neoadjuvant treatment: FDG PET/CT criteria according to breast cancer subtype. Radiology 277:358–371. https://doi.org/10.1148/radiol.2015141638

    Article  PubMed  Google Scholar 

  75. Groheux D, Biard L, Giacchetti S et al (2016) 18F-FDG PET/CT for the early evaluation of response to neoadjuvant treatment in triple-negative breast cancer: influence of the chemotherapy regimen. J Nucl Med 57:536–543. https://doi.org/10.2967/jnumed.115.163907

    Article  PubMed  CAS  Google Scholar 

  76. Gebhart G, Gámez C, Holmes E et al (2013) 18F-FDG PET/CT for early prediction of response to neoadjuvant lapatinib, trastuzumab, and their combination in HER2-positive breast cancer: results from Neo-ALTTO. J Nucl Med 54:1862–1868. https://doi.org/10.2967/jnumed.112.119271

    Article  PubMed  CAS  Google Scholar 

  77. Groheux D, Giacchetti S, Espié M et al (2011) Early monitoring of response to neoadjuvant chemotherapy in breast cancer with (18)F-FDG PET/CT: defining a clinical aim. Eur J Nucl Med Mol Imaging 38:419–425. https://doi.org/10.1007/s00259-010-1660-5

    Article  PubMed  Google Scholar 

  78. Modi S, Jacot W, Yamashita T et al (2022) Trastuzumab deruxtecan in previously treated HER2-low advanced breast cancer. N Engl J Med 387:9–20. https://doi.org/10.1056/NEJMoa2203690

    Article  PubMed  CAS  Google Scholar 

  79. Nicolò E, Boscolo Bielo L, Curigliano G, Tarantino P (2023) The HER2-low revolution in breast oncology: steps forward and emerging challenges. Ther Adv Med Oncol 15:17588359231152842. https://doi.org/10.1177/17588359231152842

    Article  PubMed  PubMed Central  Google Scholar 

  80. Humbert O, Berriolo-Riedinger A, Riedinger JM et al (2012) Changes in 18F-FDG tumor metabolism after a first course of neoadjuvant chemotherapy in breast cancer: influence of tumor subtypes. Ann Oncol 23:2572–2577. https://doi.org/10.1093/annonc/mds071

    Article  PubMed  CAS  Google Scholar 

  81. Koolen BB, Pengel KE, Wesseling J et al (2013) FDG PET/CT during neoadjuvant chemotherapy may predict response in ER-positive/HER2-negative and triple negative, but not in HER2-positive breast cancer. Breast 22:691–697. https://doi.org/10.1016/j.breast.2012.12.020

    Article  PubMed  Google Scholar 

  82. Koolen BB, Pengel KE, Wesseling J et al (2014) Sequential (18)F-FDG PET/CT for early prediction of complete pathological response in breast and axilla during neoadjuvant chemotherapy. Eur J Nucl Med Mol Imaging 41:32–40. https://doi.org/10.1007/s00259-013-2515-7

    Article  PubMed  CAS  Google Scholar 

  83. Groheux D, Hindié E, Giacchetti S et al (2012) Triple-negative breast cancer: early assessment with 18F-FDG PET/CT during neoadjuvant chemotherapy identifies patients who are unlikely to achieve a pathologic complete response and are at a high risk of early relapse. J Nucl Med 53:249–254. https://doi.org/10.2967/jnumed.111.094045

    Article  PubMed  CAS  Google Scholar 

  84. Zucchini G, Quercia S, Zamagni C et al (2013) Potential utility of early metabolic response by 18F-2-fluoro-2-deoxy-d-glucose-positron emission tomography/computed tomography in a selected group of breast cancer patients receiving preoperative chemotherapy. Eur J Cancer 49:1539–1545. https://doi.org/10.1016/j.ejca.2012.12.024

    Article  PubMed  CAS  Google Scholar 

  85. Groheux D, Hindié E, Giacchetti S et al (2014) Early assessment with 18F-fluorodeoxyglucose positron emission tomography/computed tomography can help predict the outcome of neoadjuvant chemotherapy in triple negative breast cancer. Eur J Cancer 50:1864–1871. https://doi.org/10.1016/j.ejca.2014.04.020

    Article  PubMed  Google Scholar 

  86. Humbert O, Riedinger J-M, Charon-Barra C et al (2015) Identification of biomarkers including 18FDG-PET/CT for early prediction of response to neoadjuvant chemotherapy in Triple Negative Breast Cancer. Clin Cancer Res. https://doi.org/10.1158/1078-0432.CCR-15-0384

    Article  PubMed  Google Scholar 

  87. Buzdar AU, Ibrahim NK, Francis D et al (2005) Significantly higher pathologic complete remission rate after neoadjuvant therapy with trastuzumab, paclitaxel, and epirubicin chemotherapy: results of a randomized trial in human epidermal growth factor receptor 2-positive operable breast cancer. J Clin Oncol 23:3676–3685. https://doi.org/10.1200/JCO.2005.07.032

    Article  PubMed  CAS  Google Scholar 

  88. Gianni L, Eiermann W, Semiglazov V et al (2010) Neoadjuvant chemotherapy with trastuzumab followed by adjuvant trastuzumab versus neoadjuvant chemotherapy alone, in patients with HER2-positive locally advanced breast cancer (the NOAH trial): a randomised controlled superiority trial with a parallel HER2-negative cohort. Lancet 375:377–384. https://doi.org/10.1016/S0140-6736(09)61964-4

    Article  PubMed  CAS  Google Scholar 

  89. Hatschek T, Foukakis T, Bjöhle J et al (2021) Neoadjuvant trastuzumab, pertuzumab, and docetaxel vs trastuzumab emtansine in patients with ERBB2-positive breast cancer: a phase 2 randomized clinical trial. JAMA Oncol 7:1360–1367. https://doi.org/10.1001/jamaoncol.2021.1932

    Article  PubMed  Google Scholar 

  90. Groheux D, Giacchetti S, Hatt M et al (2013) HER2-overexpressing breast cancer: FDG uptake after two cycles of chemotherapy predicts the outcome of neoadjuvant treatment. Br J Cancer 109:1157–1164. https://doi.org/10.1038/bjc.2013.469

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Humbert O, Cochet A, Riedinger J-M et al (2014) HER2-positive breast cancer: 18F-FDG PET for early prediction of response to trastuzumab plus taxane-based neoadjuvant chemotherapy. Eur J Nucl Med Mol Imaging 41:1525–1533. https://doi.org/10.1007/s00259-014-2739-1

    Article  PubMed  CAS  Google Scholar 

  92. Cheng J, Wang Y, Mo M et al (2015) 18F-fluorodeoxyglucose (FDG) PET/CT after two cycles of neoadjuvant therapy may predict response in HER2-negative, but not in HER2-positive breast cancer. Oncotarget 6:29388–29395

    Article  PubMed  PubMed Central  Google Scholar 

  93. Coudert B, Pierga J-Y, Mouret-Reynier M-A et al (2020) Long-term outcomes in patients with PET-predicted poor-responsive HER2-positive breast cancer treated with neoadjuvant bevacizumab added to trastuzumab and docetaxel: 5-year follow-up of the randomised Avataxher study. EClinicalMedicine 28:100566. https://doi.org/10.1016/j.eclinm.2020.100566

    Article  PubMed  PubMed Central  Google Scholar 

  94. Pérez-García JM, Gebhart G, Borrego MR et al (2022) Trastuzumab and pertuzumab without chemotherapy in early-stage HER2+ breast cancer: a plain language summary of the PHERGain study. Future Oncol 18:3677–3688. https://doi.org/10.2217/fon-2022-0663

    Article  PubMed  CAS  Google Scholar 

  95. Semiglazov VF, Semiglazov VV, Dashyan GA et al (2007) Phase 2 randomized trial of primary endocrine therapy versus chemotherapy in postmenopausal patients with estrogen receptor-positive breast cancer. Cancer 110:244–254. https://doi.org/10.1002/cncr.22789

    Article  PubMed  CAS  Google Scholar 

  96. von Minckwitz G, Kümmel S, Vogel P et al (2008) Intensified neoadjuvant chemotherapy in early-responding breast cancer: phase III randomized GeparTrio study. J Natl Cancer Inst 100:552–562. https://doi.org/10.1093/jnci/djn089

    Article  CAS  Google Scholar 

  97. Lee IH, Lee SJ, Lee J et al (2020) Utility of 18F-FDG PET/CT for predicting pathologic complete response in hormone receptor-positive, HER2-negative breast cancer patients receiving neoadjuvant chemotherapy. BMC Cancer 20:1106. https://doi.org/10.1186/s12885-020-07505-w

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Grapin M, Coutant C, Riedinger J-M et al (2019) Combination of breast imaging parameters obtained from 18F-FDG PET and CT scan can improve the prediction of breast-conserving surgery after neoadjuvant chemotherapy in luminal/HER2-negative breast cancer. Eur J Radiol 113:81–88. https://doi.org/10.1016/j.ejrad.2019.02.005

    Article  PubMed  Google Scholar 

  99. Antunovic L, De Sanctis R, Cozzi L et al (2019) PET/CT radiomics in breast cancer: promising tool for prediction of pathological response to neoadjuvant chemotherapy. Eur J Nucl Med Mol Imaging 46:1468–1477. https://doi.org/10.1007/s00259-019-04313-8

    Article  PubMed  Google Scholar 

  100. Li P, Wang X, Xu C et al (2020) 18F-FDG PET/CT radiomic predictors of pathologic complete response (pCR) to neoadjuvant chemotherapy in breast cancer patients. Eur J Nucl Med Mol Imaging 47:1116–1126. https://doi.org/10.1007/s00259-020-04684-3

    Article  PubMed  CAS  Google Scholar 

  101. Oliveira C, Oliveira F, Vaz SC et al (2023) Prediction of pathological response after neoadjuvant chemotherapy using baseline FDG PET heterogeneity features in breast cancer. Br J Radiol. https://doi.org/10.1259/bjr.20220655

    Article  PubMed  PubMed Central  Google Scholar 

  102. Roy S, Whitehead TD, Li S et al (2022) Co-clinical FDG-PET radiomic signature in predicting response to neoadjuvant chemotherapy in triple-negative breast cancer. Eur J Nucl Med Mol Imaging 49:550–562. https://doi.org/10.1007/s00259-021-05489-8

    Article  PubMed  CAS  Google Scholar 

  103. de Cremoux P, Biard L, Poirot B et al (2018) 18FDG-PET/CT and molecular markers to predict response to neoadjuvant chemotherapy and outcome in HER2-negative advanced luminal breast cancers patients. Oncotarget 9:16343–16353. https://doi.org/10.18632/oncotarget.24674

    Article  PubMed  PubMed Central  Google Scholar 

  104. Yang L, Chang J, He X et al (2022) PET/CT-based radiomics analysis may help to predict neoadjuvant chemotherapy outcomes in breast cancer. Front Oncol 12:849626. https://doi.org/10.3389/fonc.2022.849626

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. de Mooij CM, van Nijnatten TJA, Goorts B et al (2023) Prediction of primary tumour and axillary lymph node response to neoadjuvant chemo(targeted) therapy with dedicated breast [18F]FDG PET/MRI in breast cancer. Cancers (Basel) 15:401. https://doi.org/10.3390/cancers15020401

    Article  PubMed  CAS  Google Scholar 

  106. Umutlu L, Kirchner J, Bruckmann N-M et al (2022) Multiparametric 18F-FDG PET/MRI-based radiomics for prediction of pathological complete response to neoadjuvant chemotherapy in breast cancer. Cancers (Basel) 14:1727. https://doi.org/10.3390/cancers14071727

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Therasse P, Arbuck SG, Eisenhauer EA et al (2000) New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst 92:205–216

    Article  PubMed  CAS  Google Scholar 

  108. Eisenhauer EA, Therasse P, Bogaerts J et al (2009) New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 45:228–247. https://doi.org/10.1016/j.ejca.2008.10.026

    Article  PubMed  CAS  Google Scholar 

  109. Cachin F, Prince HM, Hogg A et al (2006) Powerful prognostic stratification by [18F]fluorodeoxyglucose positron emission tomography in patients with metastatic breast cancer treated with high-dose chemotherapy. J Clin Oncol 24:3026–3031. https://doi.org/10.1200/JCO.2005.04.6326

    Article  PubMed  Google Scholar 

  110. Riedl CC, Pinker K, Ulaner GA et al (2017) Comparison of FDG-PET/CT and contrast-enhanced CT for monitoring therapy response in patients with metastatic breast cancer. Eur J Nucl Med Mol Imaging. https://doi.org/10.1007/s00259-017-3703-7

    Article  PubMed  PubMed Central  Google Scholar 

  111. Naghavi-Behzad M, Vogsen M, Vester RM et al (2022) Response monitoring in metastatic breast cancer: a comparison of survival times between FDG-PET/CT and CE-CT. Br J Cancer. https://doi.org/10.1038/s41416-021-01654-w

    Article  PubMed  PubMed Central  Google Scholar 

  112. Naghavi-Behzad M, Oltmann HR, Alamdari TA et al (2021) Clinical impact of FDG-PET/CT compared with CE-CT in response monitoring of metastatic breast cancer. Cancers (Basel) 13:4080. https://doi.org/10.3390/cancers13164080

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Vogsen M, Harbo F, Jakobsen NM et al (2023) Response monitoring in metastatic breast cancer: a prospective study comparing 18F-FDG PET/CT with conventional CT. J Nucl Med 64:355–361. https://doi.org/10.2967/jnumed.121.263358

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Young H, Baum R, Cremerius U et al (1999) Measurement of clinical and subclinical tumour response using [18F]-fluorodeoxyglucose and positron emission tomography: review and 1999 EORTC recommendations. European Organization for Research and Treatment of Cancer (EORTC) PET Study Group. Eur J Cancer 35:1773–1782

    Article  PubMed  CAS  Google Scholar 

  115. Wahl RL, Jacene H, Kasamon Y, Lodge MA (2009) From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med 50(Suppl 1):S122–S150. https://doi.org/10.2967/jnumed.108.057307

    Article  CAS  Google Scholar 

  116. Depardon E, Kanoun S, Humbert O et al (2018) FDG PET/CT for prognostic stratification of patients with metastatic breast cancer treated with first line systemic therapy: comparison of EORTC criteria and PERCIST. PLoS One 13:e0199529. https://doi.org/10.1371/journal.pone.0199529

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Sadaghiani MS, Rowe SP, Sheikhbahaei S (2021) Applications of artificial intelligence in oncologic 18F-FDG PET/CT imaging: a systematic review. Ann Transl Med 9:823. https://doi.org/10.21037/atm-20-6162

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Coleman RE (2006) Clinical features of metastatic bone disease and risk of skeletal morbidity. Clin Cancer Res 12:6243s–6249s. https://doi.org/10.1158/1078-0432.CCR-06-0931

    Article  PubMed  Google Scholar 

  119. Nakai T, Okuyama C, Kubota T et al (2005) Pitfalls of FDG-PET for the diagnosis of osteoblastic bone metastases in patients with breast cancer. Eur J Nucl Med Mol Imaging 32:1253–1258. https://doi.org/10.1007/s00259-005-1842-8

    Article  PubMed  Google Scholar 

  120. Schirrmeister H (2007) Detection of bone metastases in breast cancer by positron emission tomography. Radiol Clin North Am 45:669–676, vi. https://doi.org/10.1016/j.rcl.2007.05.007

    Article  PubMed  Google Scholar 

  121. Hahn S, Heusner T, Kümmel S et al (2011) Comparison of FDG-PET/CT and bone scintigraphy for detection of bone metastases in breast cancer. Acta Radiol 52:1009–1014. https://doi.org/10.1258/ar.2011.100507

    Article  PubMed  Google Scholar 

  122. van Es SC, Velleman T, Elias SG et al (2021) Assessment of bone lesions with 18F-FDG PET compared with 99mTc bone scintigraphy leads to clinically relevant differences in metastatic breast cancer management. J Nucl Med 62:177–183. https://doi.org/10.2967/jnumed.120.244640

    Article  PubMed  CAS  Google Scholar 

  123. Morris PG, Lynch C, Feeney JN et al (2010) Integrated positron emission tomography/computed tomography may render bone scintigraphy unnecessary to investigate suspected metastatic breast cancer. J Clin Oncol 28:3154–3159. https://doi.org/10.1200/JCO.2009.27.5743

    Article  PubMed  PubMed Central  Google Scholar 

  124. Groheux D, Giacchetti S, Delord M et al (2013) 18F-FDG PET/CT in staging patients with locally advanced or inflammatory breast cancer: comparison to conventional staging. J Nucl Med 54:5–11. https://doi.org/10.2967/jnumed.112.106864

    Article  PubMed  Google Scholar 

  125. Groheux D, Hindié E, Delord M et al (2012) Prognostic impact of 18FDG-PET-CT findings in clinical stage III and IIB breast cancer. J Natl Cancer Inst 104:1879–1887. https://doi.org/10.1093/jnci/djs451

    Article  PubMed  PubMed Central  Google Scholar 

  126. Hildebrandt MG, Gerke O, Baun C et al (2016) [18F]Fluorodeoxyglucose (FDG)-positron emission tomography (PET)/computed tomography (CT) in suspected recurrent breast cancer: a prospective comparative study of dual-time-point FDG-PET/CT, contrast-enhanced CT, and bone scintigraphy. J Clin Oncol 34:1889–1897. https://doi.org/10.1200/JCO.2015.63.5185

    Article  PubMed  CAS  Google Scholar 

  127. Park S, Yoon J-K, Jin Lee S et al (2017) Prognostic utility of FDG PET/CT and bone scintigraphy in breast cancer patients with bone-only metastasis. Medicine (Baltimore) 96:e8985. https://doi.org/10.1097/MD.0000000000008985

    Article  PubMed  Google Scholar 

  128. Quon A, Gambhir SS (2005) FDG-PET and beyond: molecular breast cancer imaging. J Clin Oncol 23:1664–1673. https://doi.org/10.1200/JCO.2005.11.024

    Article  PubMed  CAS  Google Scholar 

  129. Dehdashti F, Flanagan FL, Mortimer JE et al (1999) Positron emission tomographic assessment of “metabolic flare” to predict response of metastatic breast cancer to antiestrogen therapy. Eur J Nucl Med 26:51–56

    Article  PubMed  CAS  Google Scholar 

  130. Dehdashti F, Mortimer JE, Trinkaus K et al (2009) PET-based estradiol challenge as a predictive biomarker of response to endocrine therapy in women with estrogen-receptor-positive breast cancer. Breast Cancer Res Treat 113:509–517. https://doi.org/10.1007/s10549-008-9953-0

    Article  PubMed  CAS  Google Scholar 

  131. Mortimer JE, Dehdashti F, Siegel BA et al (2001) Metabolic flare: indicator of hormone responsiveness in advanced breast cancer. J Clin Oncol 19:2797–2803

    Article  PubMed  CAS  Google Scholar 

  132. Makhlin I, Korhonen KE, Martin ML et al (2022) 18F-FDG PET/CT for the evaluation of therapy response in hormone receptor-positive bone-dominant metastatic breast cancer. Radiol Imaging Cancer 4:e220032. https://doi.org/10.1148/rycan.220032

    Article  PubMed  PubMed Central  Google Scholar 

  133. Ulaner GA (2022) 16α-18F-fluoro-17β-fluoroestradiol (FES): clinical applications for patients with breast cancer. Semin Nucl Med 52:574–583. https://doi.org/10.1053/j.semnuclmed.2022.03.002

    Article  PubMed  Google Scholar 

  134. Bottoni G, Fiz F, Puntoni M et al (2023) Diagnostic effectiveness of [18F]Fluoroestradiol PET/CT in oestrogen receptor-positive breast cancer: the key role of histopathology. Evidence from an international multicentre prospective study. Eur J Nucl Med Mol Imaging. https://doi.org/10.1007/s00259-023-06173-9

    Article  PubMed  Google Scholar 

  135. Backhaus P, Burg MC, Roll W et al (2022) Simultaneous FAPI PET/MRI targeting the fibroblast-activation protein for breast cancer. Radiology 302:39–47. https://doi.org/10.1148/radiol.2021204677

    Article  PubMed  Google Scholar 

  136. Eshet Y, Tau N, Apter S et al (2023) The role of 68 Ga-FAPI PET/CT in detection of metastatic lobular breast cancer. Clin Nucl Med 48:228–232. https://doi.org/10.1097/RLU.0000000000004540

    Article  PubMed  Google Scholar 

  137. Gebhart G, Lamberts LE, Wimana Z et al (2016) Molecular imaging as a tool to investigate heterogeneity of advanced HER2-positive breast cancer and to predict patient outcome under trastuzumab emtansine (T-DM1): the ZEPHIR trial. Ann Oncol 27:619–624. https://doi.org/10.1093/annonc/mdv577

    Article  PubMed  CAS  Google Scholar 

  138. Ulaner GA, Carrasquillo JA, Riedl CC et al (2020) Identification of HER2-positive metastases in patients with HER2-negative primary breast cancer by using HER2-targeted 89Zr-pertuzumab PET/CT. Radiology 296:370–378. https://doi.org/10.1148/radiol.2020192828

    Article  PubMed  Google Scholar 

Download references

Funding

All the authors declare no funding related to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Groheux.

Ethics declarations

Conflict of interest

All the authors declare no conflicts of interest and competing interests.

Human and animal studies

This article does not contain any studies with human or animal subjects performed by the any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Groheux, D., Ulaner, G.A. & Hindie, E. Breast cancer: treatment response assessment with FDG-PET/CT in the neoadjuvant and in the metastatic setting. Clin Transl Imaging 11, 439–452 (2023). https://doi.org/10.1007/s40336-023-00584-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40336-023-00584-2

Keywords

Navigation