Skip to main content

Epidemiology, risk factors, and prognostic factors of gliomas

Abstract

Purpose

Diffuse gliomas are the most common primary malignant brain tumors in adults. Many studies analyzed their epidemiology, such as the incidence and mortality. Moreover, the identification of their risk factors is still controversial and to date we have only a few accepted and confirmed risk factors. In the last few years, many molecular markers have been analyzed and correlated to the prognosis of gliomas.

We performed a review aiming to collect and clarify data on epidemiology, risk factors and prognostic factors regarding glioma patients.

Methods

We performed a comprehensive literature review of research studies focusing on epidemiology of gliomas and their risk factors. At the same time, we collected studies analyzing the most important and validated prognostic factors in glioma patients.

Results

Glioblastoma represents the most common primary malignant brain tumor with an incidence rate of 3.23 per 100,000 population. Diffuse astrocytoma and oligodendroglioma tend to peak in young adults with a median age of 46 and 43 years, respectively). Overall, the incidence rate of gliomas is higher in male patients than in females. Rates of overall survival vary widely, ranging from 5 year survival rates of 94.7% for pilocytic astrocytoma to 6.8% for glioblastoma. About 5% of gliomas can be classified as familial and associated with hereditary syndromes, such as the Li-Fraumeni, the Turcot and neurofibromatosis. Ionizing radiation remains the only ascertained environmental risk factor associated with glioma. In addition to the clinical characteristics, such as the age, performance status and the extent of resection, also mutational status of some genes such as IDH, TERT, CDKN2A and the MGMT methylation status can be correlated with the glioma patient survival.

Conclusions

Gliomas represent rare tumors and can be defined as a heterogenous group of primitive brain tumors. In recent years, new data emerged regarding the etiology of these tumors as well as the knowledge of new prognostic factors.

This is a preview of subscription content, access via your institution.

References

  1. Ostrom QT, Patil N, Cioffi G, Waite K, Kruchko C, Barnholtz-Sloan JS (2020) CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2013–2017. Neuro Oncol 22(12 Supp 2):iv1–iv96. https://doi.org/10.1093/neuonc/noaa200

    Article  PubMed  PubMed Central  Google Scholar 

  2. Louis DN, Perry A, Wesseling P et al (2021) The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro Oncol 23(8):1231–1251. https://doi.org/10.1093/neuonc/noab106

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. Patil N, Kelly ME, Yeboa DN et al (2021) Epidemiology of brainstem high-grade gliomas in children and adolescents in the United States, 2000–2017. Neuro Oncol 23(6):990–998. https://doi.org/10.1093/neuonc/noaa295

    Article  PubMed  Google Scholar 

  4. Hoffman LM, Veldhuijzen van Zanten SEM, Colditz N et al (2018) Clinical, radiologic, pathologic, and molecular characteristics of long-term survivors of diffuse intrinsic pontine glioma (DIPG): a collaborative report from the international and European society for pediatric oncology DIPG registries. J Clin Oncol 36(19):1963–1972. https://doi.org/10.1200/JCO.2017.75.9308

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Leece R, Xu J, Ostrom QT, Chen Y, Kruchko C, Barnholtz-Sloan JS (2017) Global incidence of malignant brain and other central nervous system tumors by histology, 2003–2007. Neuro Oncol 19(11):1553–1564. https://doi.org/10.1093/neuonc/nox091

    Article  PubMed  PubMed Central  Google Scholar 

  6. Girardi F, Rous B, Stiller CA et al (2021) The histology of brain tumors for 67 331 children and 671 085 adults diagnosed in 60 countries during 2000–2014: a global, population-based study (CONCORD-3). Neuro Oncol 23(10):1765–1776. https://doi.org/10.1093/neuonc/noab067

    Article  PubMed  PubMed Central  Google Scholar 

  7. Nakamura H, Makino K, Yano S, Kuratsu JI (2011) Kumamoto brain tumor research group epidemiological study of primary intracranial tumors: a regional survey in kumamoto prefecture in southern Japan–20-year study. Int J Clin Oncol 16(4):314–321. https://doi.org/10.1007/s10147-010-0178-y

    Article  PubMed  Google Scholar 

  8. Ostrom QT, Egan KM, Nabors LB et al (2020) Glioma risk associated with extent of estimated European genetic ancestry in African Americans and Hispanics. Int J Cancer 146(3):739–748. https://doi.org/10.1002/ijc.32318

    CAS  Article  PubMed  Google Scholar 

  9. Lin D, Wang M, Chen Y et al (2021) Trends in intracranial glioma incidence and mortality in the United States, 1975–2018. Front Oncol 11:748061. https://doi.org/10.3389/fonc.2021.748061

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wrensch M, Lee M, Miike R et al (1997) Familial and personal medical history of cancer and nervous system conditions among adults with glioma and controls. Am J Epidemiol 145(7):581–593. https://doi.org/10.1093/oxfordjournals.aje.a009154

    CAS  Article  PubMed  Google Scholar 

  11. Louis DN, Perry A, Reifenberger G et al (2016) The 2016 world health organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131(6):803–820. https://doi.org/10.1007/s00401-016-1545-1

    Article  PubMed  Google Scholar 

  12. Ostrom QT, Fahmideh MA, Cote DJ et al (2019) Risk factors for childhood and adult primary brain tumors. Neuro Oncol 21(11):1357–1375. https://doi.org/10.1093/neuonc/noz123

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Kinnersley B, Mitchell JS, Gousias K et al (2015) Quantifying the heritability of glioma using genome-wide complex trait analysis. Sci Rep 5:17267. https://doi.org/10.1038/srep17267

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Rice T, Lachance DH, Molinaro AM et al (2016) Understanding inherited genetic risk of adult glioma - a review. Neurooncol Pract 3(1):10–16. https://doi.org/10.1093/nop/npv026

    Article  PubMed  Google Scholar 

  15. Howell AE, Zheng J, Haycock PC et al (2018) Use of mendelian randomization for identifying risk factors for brain tumors. Front Genet 9:525. https://doi.org/10.3389/fgene.2018.00525

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Francis SS, Ostrom QT, Cote DJ, Smith TR, Claus E, Barnholtz-Sloan JS (2022) The epidemiology of central nervous system tumors. Hematol Oncol Clin North Am 36(1):23–42. https://doi.org/10.1016/j.hoc.2021.08.012

    Article  PubMed  Google Scholar 

  17. Khattab A, Monga DK. (2021) Turcot Syndrome. In: StatPearls. StatPearls Publishing. http://www.ncbi.nlm.nih.gov/books/NBK534782/. Accessed 6 Jan 2022

  18. Braganza MZ, Kitahara CM, Berrington de González A, Inskip PD, Johnson KJ, Rajaraman P (2012) Ionizing radiation and the risk of brain and central nervous system tumors: a systematic review. Neuro Oncol 14(11):1316–1324. https://doi.org/10.1093/neuonc/nos208

    Article  PubMed  PubMed Central  Google Scholar 

  19. Davis F, Il’yasova D, Rankin K, McCarthy B, Bigner DD (2011) Medical diagnostic radiation exposures and risk of gliomas. Radiat Res 175(6):790–796. https://doi.org/10.1667/RR2186.1

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Neglia JP, Robison LL, Stovall M et al (2006) New primary neoplasms of the central nervous system in survivors of childhood cancer: a report from the childhood cancer survivor study. J Natl Cancer Inst 98(21):1528–1537. https://doi.org/10.1093/jnci/djj411

    Article  PubMed  Google Scholar 

  21. Inskip PD, Sigurdson AJ, Veiga L et al (2016) Radiation-related new primary solid cancers in the childhood cancer survivor study: comparative radiation dose response and modification of treatment effects. Int J Radiat Oncol Biol Phys 94(4):800–807. https://doi.org/10.1016/j.ijrobp.2015.11.046

    Article  PubMed  Google Scholar 

  22. Sheppard JP, Nguyen T, Alkhalid Y, Beckett JS, Salamon N, Yang I (2018) Risk of brain tumor induction from pediatric head CT procedures: a systematic literature review. Brain Tumor Res Treat 6(1):1–7. https://doi.org/10.14791/btrt.2018.6.e4

    Article  PubMed  PubMed Central  Google Scholar 

  23. INTERPHONE Study Group (2010) Brain tumour risk in relation to mobile telephone use: results of the INTERPHONE international case-control study. Int J Epidemiol 39(3):675–694. https://doi.org/10.1093/ije/dyq079

    Article  Google Scholar 

  24. Benson VS, Pirie K, Schüz J et al (2013) Mobile phone use and risk of brain neoplasms and other cancers: prospective study. Int J Epidemiol 42(3):792–802. https://doi.org/10.1093/ije/dyt072

    Article  PubMed  Google Scholar 

  25. Frei P, Poulsen AH, Johansen C, Olsen JH, Steding-Jessen M, Schüz J (2011) Use of mobile phones and risk of brain tumours: update of Danish cohort study. BMJ 343:d6387. https://doi.org/10.1136/bmj.d6387

    Article  PubMed  PubMed Central  Google Scholar 

  26. Porter AB, Lachance DH, Johnson DR (2015) Socioeconomic status and glioblastoma risk: a population-based analysis. Cancer Causes Control 26(2):179–185. https://doi.org/10.1007/s10552-014-0496-x

    Article  PubMed  Google Scholar 

  27. Demers PA, Vaughan TL, Schommer RR (1991) Occupation, socioeconomic status, and brain tumor mortality: a death certificate-based case-control study. J Occup Med 33(9):1001–1006

    CAS  PubMed  Google Scholar 

  28. Plascak JJ, Fisher JL (2013) Area-based socioeconomic position and adult glioma: a hierarchical analysis of surveillance epidemiology and end results data. PLoS ONE 8(4):e60910. https://doi.org/10.1371/journal.pone.0060910

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Khanolkar AR, Ljung R, Talbäck M et al (2016) Socioeconomic position and the risk of brain tumour: a Swedish national population-based cohort study. J Epidemiol Community Health 70(12):1222–1228. https://doi.org/10.1136/jech-2015-207002

    Article  PubMed  Google Scholar 

  30. Cote DJ, Ostrom QT, Gittleman H et al (2019) Glioma incidence and survival variations by county-level socioeconomic measures. Cancer 125(19):3390–3400. https://doi.org/10.1002/cncr.32328

    Article  PubMed  Google Scholar 

  31. Dlamini Z, Alaouna M, Mbatha S et al (2021) Genetic drivers of head and neck squamous cell carcinoma: aberrant splicing events, mutational burden, HPV infection and future targets. Genes (Basel) 12(3):422. https://doi.org/10.3390/genes12030422

    CAS  Article  Google Scholar 

  32. Araldi RP, Sant’Ana TA, Módolo DG, et al (2018) The human papillomavirus (HPV)-related cancer biology: an overview. Biomed Pharmacother 106:1537–1556. https://doi.org/10.1016/j.biopha.2018.06.149

    CAS  Article  PubMed  Google Scholar 

  33. Neves AM, Thompson G, Carvalheira J et al (2008) Detection and quantitative analysis of human herpesvirus in pilocytic astrocytoma. Brain Res 1221:108–114. https://doi.org/10.1016/j.brainres.2008.05.009

    CAS  Article  PubMed  Google Scholar 

  34. Garcia-Martinez A, Alenda C, Irles E et al (2017) Lack of cytomegalovirus detection in human glioma. Virol J 14(1):216. https://doi.org/10.1186/s12985-017-0885-3

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. Wrensch M, Weinberg A, Wiencke J et al (1997) Does prior infection with varicella-zoster virus influence risk of adult glioma? Am J Epidemiol 145(7):594–597. https://doi.org/10.1093/oxfordjournals.aje.a009155

    CAS  Article  PubMed  Google Scholar 

  36. Amirian ES, Scheurer ME, Zhou R et al (2016) History of chickenpox in glioma risk: a report from the glioma international case-control study (GICC). Cancer Med 5(6):1352–1358. https://doi.org/10.1002/cam4.682

    Article  PubMed  PubMed Central  Google Scholar 

  37. Amirian ES, Zhou R, Wrensch MR et al (2016) Approaching a scientific consensus on the association between allergies and glioma risk: a report from the glioma international case-control study. Cancer Epidemiol Biomarkers Prev 25(2):282–290. https://doi.org/10.1158/1055-9965.EPI-15-0847

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. Linos E, Raine T, Alonso A, Michaud D (2007) Atopy and risk of brain tumors: a meta-analysis. J Natl Cancer Inst 99(20):1544–1550. https://doi.org/10.1093/jnci/djm170

    Article  PubMed  Google Scholar 

  39. Alexandrov LB, Kim J, Haradhvala NJ et al (2020) The repertoire of mutational signatures in human cancer. Nature 578(7793):94–101. https://doi.org/10.1038/s41586-020-1943-3

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. Claus EB, Cannataro VL, Gaffney SG, Townsend JP (2022) Environmental and sex-specific molecular signatures of glioma causation. Neuro Oncol 24(1):29–36. https://doi.org/10.1093/neuonc/noab103

    Article  PubMed  Google Scholar 

  41. Hu J, La Vecchia C, Negri E et al (1999) Diet and brain cancer in adults: a case-control study in northeast China. Int J Cancer 81(1):20–23. https://doi.org/10.1002/(sici)1097-0215(19990331)81:1%3c20::aid-ijc4%3e3.0.co;2-2

    CAS  Article  PubMed  Google Scholar 

  42. Giles GG, McNeil JJ, Donnan G et al (1994) Dietary factors and the risk of glioma in adults: results of a case-control study in Melbourne. Australia Int J Cancer 59(3):357–362. https://doi.org/10.1002/ijc.2910590311

    CAS  Article  PubMed  Google Scholar 

  43. Lee M, Wrensch M, Miike R (1997) Dietary and tobacco risk factors for adult onset glioma in the San Francisco Bay Area (California, USA). Cancer Causes Control 8(1):13–24. https://doi.org/10.1023/a:1018470802969

    CAS  Article  PubMed  Google Scholar 

  44. Baglietto L, Giles GG, English DR, Karahalios A, Hopper JL, Severi G (2011) Alcohol consumption and risk of glioblastoma; evidence from the melbourne collaborative cohort study. Int J Cancer 128(8):1929–1934. https://doi.org/10.1002/ijc.25770

    CAS  Article  PubMed  Google Scholar 

  45. Braganza MZ, Rajaraman P, Park Y et al (2014) Cigarette smoking, alcohol intake, and risk of glioma in the NIH-AARP diet and health study. Br J Cancer 110(1):242–248. https://doi.org/10.1038/bjc.2013.611

    CAS  Article  PubMed  Google Scholar 

  46. Shao C, Zhao W, Qi Z, He J (2016) Smoking and glioma risk: evidence from a meta-analysis of 25 observational studies. Medicine (Baltimore) 95(2):e2447. https://doi.org/10.1097/MD.0000000000002447

    Article  Google Scholar 

  47. Gu F, Xiao Q, Chu LW et al (2016) Sleep duration and cancer in the NIH-AARP diet and health study cohort. PLoS ONE 11(9):e0161561. https://doi.org/10.1371/journal.pone.0161561

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. Kuan AS, Green J, Kitahara CM et al (2019) Diet and risk of glioma: combined analysis of 3 large prospective studies in the UK and USA. Neuro Oncol 21(7):944–952. https://doi.org/10.1093/neuonc/noz013

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. Tesileanu CMS, Dirven L, Wijnenga MMJ et al (2020) Survival of diffuse astrocytic glioma, IDH1/2 wildtype, with molecular features of glioblastoma, WHO grade IV: a confirmation of the cIMPACT-NOW criteria. Neuro Oncol 22(4):515–523. https://doi.org/10.1093/neuonc/noz200

    CAS  Article  PubMed  Google Scholar 

  50. Pignatti F, van den Bent M, Curran D et al (2002) Prognostic factors for survival in adult patients with cerebral low-grade glioma. JCO 20(8):2076–2084. https://doi.org/10.1200/JCO.2002.08.121

    Article  Google Scholar 

  51. van den Bent MJ, Smits M, Kros JM, Chang SM (2017) Diffuse infiltrating oligodendroglioma and astrocytoma. JCO 35(21):2394–2401. https://doi.org/10.1200/JCO.2017.72.6737

    Article  Google Scholar 

  52. Gorlia T, Wu W, Wang M et al (2013) New validated prognostic models and prognostic calculators in patients with low-grade gliomas diagnosed by central pathology review: a pooled analysis of EORTC/RTOG/NCCTG phase III clinical trials. Neuro Oncol 15(11):1568–1579. https://doi.org/10.1093/neuonc/not117

    Article  PubMed  PubMed Central  Google Scholar 

  53. Pallud J, Audureau E, Blonski M et al (2014) Epileptic seizures in diffuse low-grade gliomas in adults. Brain 137(Pt 2):449–462. https://doi.org/10.1093/brain/awt345

    Article  PubMed  Google Scholar 

  54. Chang EF, Smith JS, Chang SM et al (2008) Preoperative prognostic classification system for hemispheric low-grade gliomas in adults: clinical article. J Neurosurg 109(5):817–824. https://doi.org/10.3171/JNS/2008/109/11/0817

    Article  PubMed  Google Scholar 

  55. Weller M, van den Bent M, Preusser M et al (2021) EANO guidelines on the diagnosis and treatment of diffuse gliomas of adulthood. Nat Rev Clin Oncol 18(3):170–186. https://doi.org/10.1038/s41571-020-00447-z

    Article  PubMed  Google Scholar 

  56. Gorlia T, Delattre JY, Brandes AA et al (2013) New clinical, pathological and molecular prognostic models and calculators in patients with locally diagnosed anaplastic oligodendroglioma or oligoastrocytoma. A prognostic factor analysis of European organisation for research and treatment of cancer brain tumour group study 26951. Eur J Cancer 49(16):3477–3485. https://doi.org/10.1016/j.ejca.2013.06.039

    Article  PubMed  Google Scholar 

  57. Molinaro AM, Hervey-Jumper S, Morshed RA et al (2020) Association of maximal extent of resection of contrast-enhanced and non-contrast-enhanced tumor with survival within molecular subgroups of patients with newly diagnosed glioblastoma. JAMA Oncol 6(4):495–503. https://doi.org/10.1001/jamaoncol.2019.6143

    Article  PubMed  PubMed Central  Google Scholar 

  58. Xia L, Fang C, Chen G, Sun C (2018) Relationship between the extent of resection and the survival of patients with low-grade gliomas: a systematic review and meta-analysis. BMC Cancer 18(1):48. https://doi.org/10.1186/s12885-017-3909-x

    Article  PubMed  PubMed Central  Google Scholar 

  59. Jakola AS, Skjulsvik AJ, Myrmel KS et al (2017) Surgical resection versus watchful waiting in low-grade gliomas. Ann Oncol 28(8):1942–1948. https://doi.org/10.1093/annonc/mdx230

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  60. Beiko J, Suki D, Hess KR et al (2014) IDH1 mutant malignant astrocytomas are more amenable to surgical resection and have a survival benefit associated with maximal surgical resection. Neuro Oncol 16(1):81–91. https://doi.org/10.1093/neuonc/not159

    CAS  Article  PubMed  Google Scholar 

  61. Bergo E, Lombardi G, Guglieri I, Capovilla E, Pambuku A, Zagonel V (2015) Neurocognitive functions and health-related quality of life in glioblastoma patients: a concise review of the literature. EurJCancerCare (Engl). https://doi.org/10.1111/ecc.12410

    Article  Google Scholar 

  62. Lombardi G, De Salvo GL, Brandes AA et al (2019) Regorafenib compared with lomustine in patients with relapsed glioblastoma (REGOMA): a multicentre, open-label, randomised, controlled, phase 2 trial. Lancet Oncol 20(1):110–119

    CAS  Article  Google Scholar 

  63. Birzu C, French P, Caccese M et al (2020) Recurrent glioblastoma: from molecular landscape to new treatment perspectives. Cancers (Basel). https://doi.org/10.3390/cancers13010047

    Article  Google Scholar 

  64. Pignatti F, van den Bent M, Curran D et al (2002) Prognostic factors for survival in adult patients with cerebral low-grade glioma. J Clin Oncol 20(8):2076–2084. https://doi.org/10.1200/JCO.2002.08.121

    Article  PubMed  Google Scholar 

  65. Di Stefano AL, Labussiere M, Lombardi G et al (2015) VEGFA SNP rs2010963 is associated with vascular toxicity in recurrent glioblastomas and longer response to bevacizumab. JNeurooncol 121(3):499–504. https://doi.org/10.1007/s11060-014-1677-x

    CAS  Article  Google Scholar 

  66. Yan H, Parsons DW, Jin G et al (2009) IDH1 and IDH2 Mutations in gliomas. N Engl J Med. https://doi.org/10.1056/NEJMoa0808710

    Article  PubMed  PubMed Central  Google Scholar 

  67. Sanson M, Marie Y, Paris S et al (2009) Isocitrate dehydrogenase 1 codon 132 mutation is an important prognostic biomarker in gliomas. J Clin Oncol 27(25):4150–4154. https://doi.org/10.1200/JCO.2009.21.9832

    CAS  Article  PubMed  Google Scholar 

  68. van den Bent MJ, Tesileanu CMS, Wick W et al (2021) Adjuvant and concurrent temozolomide for 1p/19q non-co-deleted anaplastic glioma (CATNON; EORTC study 26053–22054): second interim analysis of a randomised, open-label, phase 3 study. Lancet Oncol 22(6):813–823. https://doi.org/10.1016/S1470-2045(21)00090-5

    Article  PubMed  PubMed Central  Google Scholar 

  69. Franceschi E, De Biase D, Di Nunno V et al (2021) IDH1 Non-canonical mutations and survival in patients with glioma. Diagnostics (Basel) 11(2):342. https://doi.org/10.3390/diagnostics11020342

    CAS  Article  Google Scholar 

  70. Tesileanu CMS, Vallentgoed WR, Sanson M et al (2021) Non-IDH1-R132H IDH1/2 mutations are associated with increased DNA methylation and improved survival in astrocytomas, compared to IDH1-R132H mutations. Acta Neuropathol 141(6):945–957. https://doi.org/10.1007/s00401-021-02291-6

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  71. Dunn GP, Andronesi OC, Cahill DP (2013) From genomics to the clinic: biological and translational insights of mutant IDH1/2 in glioma. Neurosurg Focus 34(2):E2. https://doi.org/10.3171/2012.12.FOCUS12355

    Article  PubMed  Google Scholar 

  72. Cairncross G, Wang M, Shaw E et al (2013) Phase III trial of chemoradiotherapy for anaplastic oligodendroglioma: long-term results of RTOG 9402. J Clin Oncol 31(3):337–343. https://doi.org/10.1200/JCO.2012.43.2674

    CAS  Article  PubMed  Google Scholar 

  73. van den Bent MJ, Brandes AA, Taphoorn MJB et al (2013) Adjuvant procarbazine, lomustine, and vincristine chemotherapy in newly diagnosed anaplastic oligodendroglioma: long-term follow-up of EORTC brain tumor group study 26951. J Clin Oncol 31(3):344–350. https://doi.org/10.1200/JCO.2012.43.2229

    CAS  Article  PubMed  Google Scholar 

  74. Wick W, Weller M, van den Bent M et al (2014) MGMT testing–the challenges for biomarker-based glioma treatment. Nat Rev Neurol 10(7):372–385. https://doi.org/10.1038/nrneurol.2014.100

    CAS  Article  PubMed  Google Scholar 

  75. Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):987–996. https://doi.org/10.1056/NEJMoa043330

    CAS  Article  PubMed  Google Scholar 

  76. Gilbert MR, Wang M, Aldape KD et al (2013) Dose-dense temozolomide for newly diagnosed glioblastoma: a randomized phase III clinical trial. J Clin Oncol 31(32):4085–4091. https://doi.org/10.1200/JCO.2013.49.6968

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  77. Hegi ME, Diserens AC, Gorlia T et al (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352(10):997–1003. https://doi.org/10.1056/NEJMoa043331

    CAS  Article  PubMed  Google Scholar 

  78. Malmström A, Grønberg BH, Marosi C et al (2012) Temozolomide versus standard 6-week radiotherapy versus hypofractionated radiotherapy in patients older than 60 years with glioblastoma: the Nordic randomised, phase 3 trial. Lancet Oncol 13(9):916–926. https://doi.org/10.1016/S1470-2045(12)70265-6

    CAS  Article  PubMed  Google Scholar 

  79. Tesileanu CMS, Gorlia T, Golfinopoulos V, French PJ, van den Bent MJ (2022) MGMT promoter methylation determined by the MGMT-STP27 algorithm is not predictive for outcome to temozolomide in IDH-mutant anaplastic astrocytomas. Neuro Oncol. https://doi.org/10.1093/neuonc/noac014 (Published online January 31)

    Article  PubMed  Google Scholar 

  80. Wick W, Gorlia T, Bendszus M et al (2017) Lomustine and Bevacizumab in Progressive Glioblastoma. N Engl J Med 377(20):1954–1963. https://doi.org/10.1056/NEJMoa1707358

    CAS  Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Lombardi.

Ethics declarations

Conflict of interest

Alessia Pellerino, Mario Caccese, Marta Padovan, Giulia Cerretti, Giuseppe Lombardi declare no conflict of interest.

Ethical approval

This article does not contain any studies with human or animal subjects performed by the any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pellerino, A., Caccese, M., Padovan, M. et al. Epidemiology, risk factors, and prognostic factors of gliomas. Clin Transl Imaging 10, 467–475 (2022). https://doi.org/10.1007/s40336-022-00489-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40336-022-00489-6

Keywords

  • Glioma
  • Epidemiology
  • Risk factors
  • Prognostic factors