Skip to main content

Advertisement

Log in

Comprehensive review on design perspective of PET ligands based on β-amyloids, tau and neuroinflammation for diagnostic intervention of Alzheimer’s disease

  • Expert Review
  • Published:
Clinical and Translational Imaging Aims and scope Submit manuscript

Abstract

Purpose

Alzheimer’s disease (AD) is a progressive neurodegenerative pathological condition that resulted from the deterioration of cholinergic neurons over time. The pathological hallmark features of AD include extracellular β-amyloids plaques, hyperphosphorylated τ protein (tau), which is the main component of neurofibrillary tangles (NFT) and neuroinflammation. This article aims to provide a comprehensive review of PET tracers for Alzheimer’s disease, focusing on developments for targets (β-amyloids, hyperphosphorylated τ protein (tau), neuroinflammation and other related targets) available for clinical PET imaging.

Methods/design

Studies involving the existing PET tracers used in the imaging of Aβ, tau, and neuroinflammation with essential features and limitations are discussed. Experimental studies with the design perspective of PET tracers, for biomarkers like Aβ, tau protein, and neuroinflammation, which are exploited clinically through PET Imaging have been described in detail. Comparative data have been generated based on the strength and weakness of PET radioligands for preclinical and clinical studies based on their binding affinity, selectivity and imaging. PET tracers for other targets like cannabinoid receptor type 2 (CB2), P2X7 receptor, cyclooxygenase-2, macrophage colony-stimulating factor 1 receptor (CSF1R), and monoamine oxidase (MAO) have also been included.

Result

We have summarized the ideal properties in terms of tracer's design for each target and based on their target selectivity and affinity, considering its potential strength and limitations. Where multiple tracers were present for a target, we provide a comparison of their properties. A critical assessment of both the preclinical and clinical PET tracers is carried out where sufficient data are available. This can help in designing better and highly selective PET tracers.

Conclusion

Our comprehensive review will provide comparison and help in the design perspective of the futuristic PET tracers for Alzheimer's disease by improving their affinity towards biomarkers with higher selectivity Aβ/tau for delineation of AD at an early stage.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Vlassenko AG, Benzinger TLS, Morris JC (2012) PET amyloid-beta imaging in preclinical Alzheimer’s disease. Biochim Biophys Acta 1822:370–379. https://doi.org/10.1016/j.bbadis.2011.11.005

    Article  CAS  PubMed  Google Scholar 

  2. Birch AM, Katsouri L, Sastre M (2014) Modulation of inflammation in transgenic models of Alzheimer’s disease. J Neuro Inflamm 11:1–13

    Google Scholar 

  3. Zhang XY, Yang ZL, Lu GM et al (2017) PET/MR imaging: new frontier in Alzheimer’s disease and other dementias. Front Mol NeuroSci 10:1–12

    Google Scholar 

  4. García-Ayllón MS, Small DH, Avila J et al (2011) Revisiting the role of acetylcholinesterase in Alzheimer­s disease: cross-talk with β-tau and p-amyloid. Front Mol Neurosci 4:1–9

    Google Scholar 

  5. Matsuda H, Shigemoto Y, Sato N (2019) Neuroimaging of Alzheimer’s disease: focus on amyloid and tau PET. Jpn J Radiol 37:735–749. https://doi.org/10.1007/s11604-019-00867-7

    Article  PubMed  Google Scholar 

  6. Ariza M, Kolb HC, Moechars D et al (2015) Tau positron emission tomography (PET) imaging: past, present, and future. J Med Chem 58:4365–4382

    CAS  PubMed  Google Scholar 

  7. Hane FT, Robinson M, Lee BY et al (2017) Recent progress in Alzheimer’s disease research, part 3: diagnosis and treatment. J Alzheimer’s Dis 57:645–665

    Google Scholar 

  8. Valentina G, Silvia M, Marco P (2016) Dual-phase amyloid PET: hitting two birds with one stone. Eur J Nucl Med Mol Imaging 43:1300–1303. https://doi.org/10.1007/s00259-016-3393-6

    Article  PubMed  Google Scholar 

  9. Son SH, Kang K, Ko PW et al (2020) Early-phase 18F-florbetaben PET as an alternative modality for 18F-FDG PET. Clin Nucl Med 45:E8–E14

    PubMed  Google Scholar 

  10. Landscape F and Parkinson’s disease diagnosis, the current 2020. https://doi.org/10.3390/molecules25040977

  11. Owen DRJ, Gunn RN, Rabiner EA et al (2011) Mixed-affinity binding in humans with 18-kDa translocator protein ligands. J Nucl Med 52:24–32

    CAS  PubMed  Google Scholar 

  12. Werry EL, Bright FM, Piguet O et al (2019) Recent developments in TSPO PET imaging as a biomarker of neuroinflammation in neurodegenerative disorders. Int J Mol Sci 20:1–21

    Google Scholar 

  13. Velikyan I (2014) Prospective of 68Ga-Radiopharmaceutical development. Theranostics 4:47–80

    CAS  Google Scholar 

  14. Nunes-Tavares N, Santos LE, Stutz B et al (2012) Inhibition of choline acetyltransferase as a mechanism for cholinergic dysfunction induced by amyloid-β peptide oligomers. J Biol Chem 287:19377–19385

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Carvajal FJ, Inestrosa NC (2011) Interactions of AChE with A? aggregates in Alzheimerʼs brain: therapeutic relevance of IDN 5706. Front Mol Neurosci 4:1–10

    Google Scholar 

  16. Majdi A, Sadigh-Eteghad S, Rahigh Aghsan S, et al (2020) Amyloid-β, tau, and the cholinergic system in Alzheimer’s disease: seeking direction in a tangle of clues. Rev Neurosci 31:391–413. https://www.degruyter.com/view/journals/revneuro/31/4/article-p391.xml

  17. Mier W, Mier D (2015) Advantages in functional imaging of the brain. Front Hum Neurosci 9:1–6

    Google Scholar 

  18. James OG, Doraiswamy PM, Borges-Neto S (2015) PET imaging of tau pathology in Alzheimer’s disease and tauopathies. Front Neurol 6:1–4

    Google Scholar 

  19. Feng H, Wang X, Chen J et al (2019) Nuclear imaging of glucose metabolism: beyond 18 F-FDG. Contrast Med Mol Imaging 7:1–12

    Google Scholar 

  20. Suppiah S, Didier MA, Vinjamuri S (2019) The who, when, why, and how of PET amyloid imaging in management of Alzheimer’s disease-review of literature and interesting images. Diagnostics 9:25

    Google Scholar 

  21. Nordberg A, Rinne JO, Kadir A et al (2010) The use of PET in Alzheimer disease. Nat Rev Neurol 6:78–87. https://doi.org/10.1038/nrneurol.2009.217

    Article  CAS  PubMed  Google Scholar 

  22. Dubois B, Feldman HH, Jacova C et al (2014) Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria. Lancet Neurol 13:614–629

    PubMed  Google Scholar 

  23. Mosconi L, Berti, V, Glodzik L, Pupi A, De Santi S, de Leon M (2010) Pre-clinical detection of Alzheimer's disease using FDG-PET, with or without amyloid imaging. 20–(3):843–854. https://doi.org/10.3233/JAD-2010-091504

  24. Shin J, Kepe V, Barrio JR et al (2011) The merits of FDDNP-PET imaging in Alzheimers disease. J Alzheimer’s Dis 26:135–145

    Google Scholar 

  25. Leuzy A, Chiotis K, Lemoine L et al (2019) Tau PET imaging in neurodegenerative tauopathies—still a challenge. Mol Psychiatry 24:1112–1134

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Okamura N, Furumoto S, Harada R et al (2013) Novel 18F-labeled arylquinoline derivatives for noninvasive imaging of Tau pathology in Alzheimer disease. J Nucl Med 54:1420–1427

    CAS  PubMed  Google Scholar 

  27. Tolboom N, Yaqub M, Van Der Flier WM et al (2009) Detection of Alzheimer pathology in vivo using both11C-PIB and18F-FDDNP PET. J Nucl Med 50:191–197

    PubMed  Google Scholar 

  28. Mathis CA, Wang Y, Holt DP et al (2003) Synthesis and evaluation of 11C-labeled 6-substituted 2-arylbenzothiazoles as amyloid imaging agents. J Med Chem 46:2740–2754

    CAS  PubMed  Google Scholar 

  29. Klunk WE, Engler H, Nordberg A et al (2004) Imaging brain amyloid in Alzheimer’s disease with pittsburgh compound-B. Ann Neurol 55:306–319

    CAS  PubMed  Google Scholar 

  30. Manuscript AEK and CAM (2009) Departments of Psychiatry and Neurology, University of Pittsburgh School of Medicine P, Pennsylvania PU et al. 2012. Development of positron emission tomography β-amyloid.pdf., Psychiatry Interpers Biol Process, vol 21, pp 683–687. https://doi.org/10.1053/j.semnuclmed.2012.07.001

  31. Ono M, Wilson A, Nobrega J et al (2003) 11C-labeled stilbene derivatives as Aβ-aggregate-specific PET imaging agents for Alzheimer’s disease. Nucl Med Biol 30:565–571

    CAS  PubMed  Google Scholar 

  32. Zhang W, Oya S, Kung MP et al (2005) F-18 stilbenes as PET imaging agents for detecting β-amyloid plaques in the brain. J Med Chem 48:5980–5988

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Choi SR, Golding G, Zhuang Z et al (2009) Preclinical properties of 18F-AV-45: a PET agent for Aβ plaques in the brain. J Nucl Med 50:1887–1894

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Goedert M, Spillantini MG (2011) Pathogenesis of the tauopathies. J Mol Neurosci 45:425–431

    CAS  PubMed  Google Scholar 

  35. Rowe CC, Ackerman U, Browne W et al (2008) Imaging of amyloid β in Alzheimer’s disease with 18F-BAY94–9172, a novel PET tracer: proof of mechanism. Lancet Neurol 7:129–135

    CAS  PubMed  Google Scholar 

  36. Snellman A, Rokka J, Lopez-Picon FR et al (2012) Pharmacokinetics of [18F]flutemetamol in wild-type rodents and its binding to beta amyloid deposits in a mouse model of Alzheimer’s disease. Eur J Nucl Med Mol Imaging 39:1784–1795

    CAS  PubMed  Google Scholar 

  37. Koole M, Lewis DM, Buckley C et al (2009) Whole-body biodistribution and radiation dosimetry of 18F-GE067: a radioligand for in vivo brain amyloid imaging. J Nucl Med 50:818–822

    CAS  PubMed  Google Scholar 

  38. Kudo Y, Okamura N, Furumoto S et al (2007) 2-(2-[2-Dimethylaminothiazol-5-yl]ethenyl)-6-(2-[fluoro]ethoxy)benzoxazole: a novel PET agent for in vivo detection of dense amyloid plaques in Alzheimer’s disease patients. J Nucl Med 48:553–561

    CAS  PubMed  Google Scholar 

  39. Yousefi BH, von Reutern B, Scherübl D et al (2015) FIBT versus florbetaben and PiB: a preclinical comparison study with amyloid-PET in transgenic mice. EJNMMI Res 5:20

    PubMed  PubMed Central  Google Scholar 

  40. Hooshyar Yousefi B, Manook A, Grimmer T et al (2015) Characterization and first human investigation of FIBT, a novel fluorinated aβ plaque neuroimaging pet radioligand. ACS Chem Neurosci 6:428–437

    CAS  Google Scholar 

  41. Juréus A, Swahn BM, Sandell J et al (2010) Characterization of AZD4694, a novel fluorinated Aβ plaque neuroimaging PET radioligand. J Neurochem 114:784–794

    PubMed  Google Scholar 

  42. Cselényi Z, Jönhagen ME, Forsberg A et al (2012) Clinical validation of 18F-AZD4694, an amyloid-β-specific PET radioligand. J Nucl Med 53:415–424

    PubMed  Google Scholar 

  43. Rowe CC, Jones G, Dore V et al (2016) Standardized Expression of 18F-NAV4694 and 11C-PiB b-amyloid PET results with the centiloid scale. J Nucl Med 57:1233–1237

    CAS  PubMed  Google Scholar 

  44. Brockschnieder D, Schmitt-Willich H, Heinrich T et al (2012) Preclinical characterization of a novel class of 18F-labeled PET tracers for amyloid-β. J Nucl Med 53:1794–1801

    CAS  PubMed  Google Scholar 

  45. Hostetler ED, Sanabria-Bohórquez S, Fan H et al (2011) [18F]Fluoroazabenzoxazoles as potential amyloid plaque PET tracers: synthesis and in vivo evaluation in rhesus monkey. Nucl Med Biol 38:1193–1203. https://doi.org/10.1016/j.nucmedbio.2011.04.004

    Article  CAS  PubMed  Google Scholar 

  46. Kung HF, Choi SR, Qu W et al (2010) 18F stilbenes and styrylpyridines for PET imaging of Aβ plaques in Alzheimer’s disease: a miniperspective. J Med Chem 53:933

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Klunk WE, Mathis CA (2008) The future of amyloid-beta imaging: a tale of radionuclides and tracer proliferation. Curr Opin Neurol 21:683–687

    PubMed  PubMed Central  Google Scholar 

  48. Schilling LP, Zimmer ER, Shin M et al (2016) Imaging Alzheimer’s disease pathophysiology with PET. Dement Neuropsychol 10:79–90

    PubMed  PubMed Central  Google Scholar 

  49. Hong MC, Kim YK, Choi JY et al (2010) Synthesis and evaluation of stilbene derivatives as a potential imaging agent of amyloid plaques. Bioorg Med Chem 18:7724–7730. https://doi.org/10.1016/j.bmc.2010.06.044

    Article  CAS  PubMed  Google Scholar 

  50. Henriksen G, Yousefi BH, Drzezga A et al (2008) Development and evaluation of compounds for imaging of β-amyloid plaque by means of positron emission tomography. Eur J Nucl Med Mol Imaging 35:S75–S81

    CAS  PubMed  Google Scholar 

  51. Svedberg MM, Rahman O, Hall H (2019) Preclinical studies of potential amyloid binding PET/SPECT ligands in Alzheimer’s disease. Nucl Med Biol 39:484–501. https://doi.org/10.1016/j.nucmedbio.2011.10.007

    Article  CAS  Google Scholar 

  52. Arakawa Y, Nai Y, Shidahara M et al (2017) PreDiction of the clinical SUV ratio in amyloid PET imaging using a biomathematic modeling approach toward the efficient development of a raDioligand. J Nucl Med 58:1285–1292

    CAS  PubMed  Google Scholar 

  53. Lin KJ, Hsu WC, Hsiao IT et al (2010) Whole-body biodistribution and brain PET imaging with [18F]AV-45, a novel amyloid imaging agent—a pilot study. Nucl Med Biol 37:497–508. https://doi.org/10.1016/j.nucmedbio.2010.02.003

    Article  CAS  PubMed  Google Scholar 

  54. Landau SM, Breault C, Joshi AD et al (2013) Amyloid-β imaging with Pittsburgh compound B and florbetapir: comparing radiotracers and quantification methods. J Nucl Med 54:70–77

    CAS  PubMed  Google Scholar 

  55. Sabri O, Sabbagh MN, Seibyl J et al (2015) Florbetaben PET imaging to detect amyloid beta plaques in Alzheimer’s disease: Phase 3 study. Alzheimer’s Dement 11:964–974

    Google Scholar 

  56. Vandenberghe R, Van Laere K, Ivanoiu A et al (2010) 18F-flutemetamol amyloid imaging in Alzheimer disease and mild cognitive impairment a phase 2 trial. Ann Neurol 68:319–329

    PubMed  Google Scholar 

  57. Description S (2011) [18F]MK-3328 as a possible novel positron emission tomography (PET) tracer for the detection of brain amyloid plaques (MK-3328–002). Clin Trials [Internet] 1–8. https://clinicaltrials.gov/ct2/show/NCT01385033

  58. Ono M, Watanabe R, Kawashima H et al (2009) Fluoro-pegylated chalcones as positron emission tomography probes for in vivo imaging of β-amyloid plaques in Alzheimer’s disease. J Med Chem 52:6394–6401

    CAS  PubMed  Google Scholar 

  59. Barrios-lopez B, Airaksinen A, Bergström K (2015) Gallium-68 radio tracers for Alzheimer’s plaque i maging. J Diagn Imaging Therapy 2:50–64

    Google Scholar 

  60. Chauhan K, Datta A, Adhikari A et al (2014) 68Ga based probe for Alzheimer’s disease: Synthesis and preclinical evaluation of homodimeric chalcone in β-amyloid imaging. Org Biomol Chem 12:7328–7337

    CAS  PubMed  Google Scholar 

  61. Chauhan K, Tiwari AK, Chadha N et al (2018) Chalcone based homodimeric PET agent, 11 C-(Chal) 2 DEA-Me, for beta amyloid imaging: synthesis and bioevaluation. Mol Pharm 15:1515–1525

    CAS  PubMed  Google Scholar 

  62. Shah M, Catafau AM (2014) Molecular imaging insights into neurodegeneration: focus on tau PET radiotracers. J Nucl Med 55:871–874

    CAS  PubMed  Google Scholar 

  63. Villemagne VL, Furumoto S, Fodero-Tavoletti MT et al (2014) In vivo evaluation of a novel tau imaging tracer for Alzheimer’s disease. Eur J Nucl Med Mol Imaging 41:816–826

    CAS  PubMed  Google Scholar 

  64. Chien DT, Bahri S, Szardenings AK et al (2013) Early clinical PET imaging results with the novel PHF-tau radioligand [F-18]-T807. J Alzheimer’s Dis 34:457–468

    CAS  Google Scholar 

  65. Hashimoto H, Kawamura K, Igarashi N et al (2014) Radiosynthesis, photoisomerization, biodistribution, and metabolite analysis of 11C-PBB3 as a clinically useful PET probe for imaging of tau pathology. J Nucl Med 55:1532–1538

    CAS  PubMed  Google Scholar 

  66. Kimura Y, Ichise M, Ito H et al (2015) PET quantification of tau pathology in human brain with 11C-PBB3. J Nucl Med 56:1359–1365

    CAS  PubMed  Google Scholar 

  67. Harada R, Okamura N, Furumoto S et al (2015) [18F]THK-5117 PET for assessing neurofibrillary pathology in Alzheimer’s disease. Eur J Nucl Med Mol Imaging 42:1052–1061

    CAS  PubMed  Google Scholar 

  68. Harada R, Okamura N, Furumoto S et al (2016) 18F-THK5351: A novel PET radiotracer for imaging neurofibrillary pathology in Alzheimer disease. J Nucl Med 57:208–214

    CAS  PubMed  Google Scholar 

  69. Fodero-Tavoletti MT, Okamura N, Furumoto S et al (2011) 18F-THK523: A novel in vivo tau imaging ligand for Alzheimer’s disease. Brain 134:1089–1100

    PubMed  Google Scholar 

  70. Harada R, Okamura N, Furumoto S et al (2013) Comparison of the binding characteristics of [18F]THK-523 and other amyloid imaging tracers to Alzheimer’s disease pathology. Eur J Nucl Med Mol Imaging 40:125–132

    CAS  PubMed  Google Scholar 

  71. Fodero-Tavoletti MT, Furumoto S, Taylor L et al (2014) Assessing THK523 selectivity for tau deposits in Alzheimer’s disease and non-Alzheimer’s disease tauopathies. Alzheimer’s Res Ther 6:1–10

    Google Scholar 

  72. Tago T, Furumoto S, Okamura N et al (2016) Preclinical evaluation of [18F]THK-5105 enantiomers: effects of chirality on its effectiveness as a tau imaging radiotracer. Mol Imaging Biol 18:258–266

    CAS  PubMed  Google Scholar 

  73. Sanabria Bohórquez S, Marik J, Ogasawara A et al (2019) [18F]GTP1 (Genentech Tau Probe 1), a radioligand for detecting neurofibrillary tangle tau pathology in Alzheimer’s disease. Eur J Nucl Med Mol Imaging 46:2077–2089

    PubMed  Google Scholar 

  74. Okamura N, Furumoto S, Fodero-Tavoletti MT et al (2014) Non-invasive assessment of Alzheimer’s disease neurofibrillary pathology using 18F-THK5105 PET. Brain 137:1762–1771

    PubMed  Google Scholar 

  75. Wooten DW, Guehl NJ, Verwer EE et al (2017) Pharmacokinetic evaluation of the tau PET radiotracer 18F–T807 (18F-AV-1451) in human subjects. J Nucl Med 58:484–491

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Xia CF, Arteaga J, Chen G et al (2013) [18F]T807, a novel tau positron emission tomography imaging agent for Alzheimer’s disease. Alzheimer’s Dement 9:666–676. https://doi.org/10.1016/j.jalz.2012.11.008

    Article  Google Scholar 

  77. Okamura N, Harada R, Ishiki A et al (2018) The development and validation of tau PET tracers: current status and future directions. Clin Transl Imaging 6:305–316. https://doi.org/10.1007/s40336-018-0290-y

    Article  PubMed  PubMed Central  Google Scholar 

  78. Lois C, Gonzalez I, Johnson KA et al (2019) PET imaging of tau protein targets: a methodology perspective. Brain Imaging Behav 13:333–344. https://doi.org/10.1007/s11682-018-9847-7

    Article  PubMed  PubMed Central  Google Scholar 

  79. Chien DT, Szardenings AK, Bahri S et al (2014) Early clinical PET imaging results with the novel PHF-tau radioligand [F18]-T808. J Alzheimer’s Dis 38:171–184

    Google Scholar 

  80. Declercq L, Rombouts F, Koole M et al (2017) Preclinical evaluation of 18F-JNJ64349311, a novel PET tracer for tau imaging. J Nucl Med 58:975–981

    CAS  PubMed  Google Scholar 

  81. Honer M, Gobbi L, Knust H et al (2018) Preclinical evaluation of 18F-RO6958948, 11C-RO6931643, and 11C-RO6924963 as novel PET radiotracers for imaging tau aggregates in Alzheimer disease. J Nucl Med 59:675–681

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Wong DF, Comley RA, Kuwabara H et al (2018) Characterization of 3 novel tau radiopharmaceuticals,11C-RO-963,11C-RO-643, and18F-RO-948, in healthy controls and in Alzheimer subjects. J Nucl Med 59:1869–1876

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Hostetler ED, Walji AM, Zeng Z et al (2016) Preclinical characterization of 18F-MK-6240, a promising PET tracer for in vivo quantification of human neurofibrillary tangles. J Nucl Med 57:1599–1606

    CAS  PubMed  Google Scholar 

  84. Aguero C, Dhaynaut M, Normandin MD et al (2019) Autoradiography validation of novel tau PET tracer [F-18]-MK-6240 on human postmortem brain tissue. Acta Neuropathol Commun. 2019(7):37

    Google Scholar 

  85. Pascoal TA, Shin M, Kang MS et al (2018) In vivo quantification of neurofibrillary tangles with [18F]MK-6240. Alzheimer’s Res Ther 10:1–14

    Google Scholar 

  86. Vriamont C, Otabashi M, Warnier C (2020) High yield production of [F] MK-6240 on the AllinOne synthesizer, a promising PET Tracer for the quantification of human neurofibrillary tangles in Alzheimer disease. J Nucl Med 61:1–2

    Google Scholar 

  87. Emadwiandr (2013) In vivo characterization and quantification of neurofibrillary tau PET radioligand 18F-MK-6240 in humans from Alzheimer’s disease dementia to young controls. J Chem Inf Model 53:1689–1699. http://file:///E:/preclinical studies/79. 18F-MK-6240 characterization in humans.pdfhttp://file:///E:/preclinical studies/79. 18F-MK-6240 characterization in humans.pdf. https://doi.org/10.2967/jnumed.118.209650

  88. Kroth H, Oden F, Molette J et al (2019) Discovery and preclinical characterization of [18F]PI-2620, a next-generation tau PET tracer for the assessment of tau pathology in Alzheimer’s disease and other tauopathies. Eur J Nucl Med Mol Imaging 46:2178–2189

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Mueller A, Bullich S, Barret O et al (2020) Tau PET imaging with 18F-PI-2620 in patients with Alzheimer disease and healthy controls: a first-in-humans study. J Nucl Med 61:911–919

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Kramer V, Brooks AF, Haeger A et al (2020) Evaluation of [18F]-N-methyl lansoprazole as a tau PET imaging agent in first-in-human studies. ACS Chem Neurosci 11:427–435

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Betthauser TJ, Cody KA, Zammit MD et al (2019) In vivo characterization and quantification of neurofibrillary tau PET radioligand 18F-MK-6240 in humans from Alzheimer disease dementia to young controls. J Nucl Med 60:93–99

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Murugan NA, Nordberg A, Ågren H (2018) Different positron emission tomography tau tracers bind to multiple binding sites on the tau fibril: insight from computational modeling. ACS Chem Neurosci 9:1757–1767

    CAS  PubMed  Google Scholar 

  93. Genentech (2016) Longitudinal evaluation of [18F]MNI-798 as a PET radioligand for imaging tau in the brain of patients with Alzheimer’s disease compared to healthy volunteers. Clin Trials.gov [Internet]. 1:1–8. https://clinicaltrials.gov/ct2/show/NCT02640092

  94. Summary T (2020) Evaluation of [18F] RO6958948 as tracer for positron emission tomography (PET) imaging of tau burden in Alzheimer’s disease participants 1–8. https://clinicaltrials.gov/ct2/show/results/NCT02792179

  95. Description S (2020) [18F] MK-6240 positron emission tomography (PET) tracer first-in-human validation study (MK-6240–001) 1–10. https://clinicaltrials.gov/ct2/show/NCT02562989

  96. Kim JS (2020) Evaluation of [18F]PI-2620 as a potential positron emission computed tomography radioligand for imaging tau protein in the brain. https://clinicaltrials.gov/ct2/show/NCT03510572

  97. Hampel H, Caraci F, Cuello AC et al (2020) A path toward precision medicine for neuroinflammatory mechanisms in Alzheimer’s disease. Front Immunol. https://doi.org/10.3389/fimmu.2020.00456

    Article  PubMed  PubMed Central  Google Scholar 

  98. Calsolaro V, Edison P (2016) Neuroinflammation in Alzheimer’s disease: Current evidence and future directions. Alzheimer’s Dement 12:719–732. https://doi.org/10.1016/j.jalz.2016.02.010

    Article  Google Scholar 

  99. Cavaliere C, Tramontano L, Fiorenza D et al (2020) Gliosis and neurodegenerative diseases: the role of PET and MR imaging. Front Cell Neurosci 14:1–13

    Google Scholar 

  100. Liu CH, Sastre A, Conroy R et al (2014) NIH workshop on clinical translation of molecular imaging probes and technology—meeting report. Mol Imaging Biol 16:595–604

    PubMed  PubMed Central  Google Scholar 

  101. Lagarde J, Sarazin M, Bottlaender M (2018) In vivo PET imaging of neuroinflammation in Alzheimer’s disease. J Neural Transm 125:847–867

    CAS  PubMed  Google Scholar 

  102. Zanotti-Fregonara P, Zhang Y, Jenko KJ et al (2014) Synthesis and evaluation of translocator 18 kDa protein (TSPO) positron emission tomography (PET) radioligands with low binding sensitivity to human single nucleotide polymorphism rs6971. ACS Chem Neurosci 5:963–971

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Fujita M, Kobayashi M, Ikawa M et al (2017) Comparison of four 11C-labeled PET ligands to quantify translocator protein 18 kDa (TSPO) in human brain: (R)-PK11195, PBR28, DPA-713, and ER176—based on recent publications that measured specific-to-non-displaceable ratios. EJNMMI Res. https://doi.org/10.1186/s13550-017-0334-8

    Article  PubMed  PubMed Central  Google Scholar 

  104. Liu B, Le KX, Park MA et al (2015) In vivo detection of age-and disease-related increases in neuroinflammation by18F-GE180 TSPO microPET imaging in wild-type and Alzheimer’s transgenic mice. J Neurosci 35:15716–15730

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Zanotti-Fregonara P, Veronese M, Pascual B et al (2019) The validity of 18 F-GE180 as a TSPO imaging agent. Eur J Nucl Med Mol Imaging 46:1205–1207

    PubMed  Google Scholar 

  106. Gifford AN, Makriyannis A, Volkow ND et al (2002) In vivo imaging of the brain cannabinoid receptor. Chem Phys Lipids 121:65–72

    CAS  PubMed  Google Scholar 

  107. Ahmad R, Koole M, Evens N et al (2013) Whole-body biodistribution and radiation dosimetry of the cannabinoid type 2 receptor ligand [11C]-NE40 in healthy subjects. Mol Imaging Biol 15:384–390

    PubMed  Google Scholar 

  108. Berdyyeva T, Xia C, Taylor N et al (2019) PET imaging of the P2X7 ion channel with a novel tracer [18F]JNJ-64413739 in a rat model of neuroinflammation. Mol Imaging Biol 21:871–878

    CAS  PubMed  Google Scholar 

  109. Dileep Kumar JS, Bai B, Zanderigo F et al (2018) In vivo brain imaging, biodistribution, and radiation dosimetry estimation of [11C]celecoxib, a COX-2 PET ligand, in nonhuman primates. Molecules 23:1–11

    Google Scholar 

  110. Horti AG, Naik R, Foss CA et al (2019) PET imaging of microglia by targeting macrophage colony-stimulating factor 1 receptor (CSF1R). Proc Natl Acad Sci USA 116:1686–1691

    CAS  PubMed  Google Scholar 

  111. Narayanaswami V, Drake LR, Brooks AF et al (2019) Classics in neuroimaging: development of PET tracers for imaging monoamine oxidases. ACS Chem Neurosci 10:1867–1871

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Fowler JS, Logan J, Shumay E et al (2015) Monoamine oxidase: radiotracer chemistry and human studies. J Label Compd Radiopharm 58:51–64

    CAS  Google Scholar 

Download references

Acknowledgments

This report was supported by INMAS, Defense Research and Development Organization. The authors also extend their thanks to Dr. Tarun Sekhri, Director at INMAS, for constant encouragement and support.

Author information

Authors and Affiliations

Authors

Contributions

PPH planned the study, PH and PM performed article search and selection, analyzed the data, and drafted the manuscript. NS gave support in the selection and search. AKM, AJ, and SC, reviewed the manuscript. All the authors reviewed the final version of the text.

Corresponding author

Correspondence to Puja Panwar Hazari.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

This manuscript does not involve any study on animals or humans.

Consent for publication

The manuscript has been seen and approved by all authors for submission.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mittal, P., Singh, N., Chaturvedi, S. et al. Comprehensive review on design perspective of PET ligands based on β-amyloids, tau and neuroinflammation for diagnostic intervention of Alzheimer’s disease. Clin Transl Imaging 9, 153–175 (2021). https://doi.org/10.1007/s40336-021-00410-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40336-021-00410-7

Navigation