Radiolabelled PSMA PET/CT or PET/MRI in hepatocellular carcinoma (HCC): a systematic review



Radiolabelled prostate-specific membrane antigen PSMA-based PET/CT or PET/MRI is a whole-body imaging technique usually performed for the detection of prostate cancer lesions. PSMA has been also demonstrated to be expressed by the neovasculature of many other solid tumors. The aim of this review is to evaluate the possible diagnostic role of radiolabelled PSMA PET/CT or PET/MRI in patients with hepatocellular carcinoma, by summarizing the available literature data.


A wide literature search of the PubMed/MEDLINE, Scopus, Embase and Cochrane library databases was made to find relevant published articles about the diagnostic performance of radiolabelled PSMA binding agents in PET/CT or PET/MRI imaging of patients with hepatocellular carcinoma.


Ten case reports and three studies showed that hepatocellular carcinoma is PSMA-avid.


Radiolabelled PSMA imaging seems to be useful in analyzing hepatocellular carcinoma. Further studies enrolling a wider population are needed to clarify the real clinical and diagnostic role of radiolabelled PSMA in this setting.


Hepatocellular carcinoma (HCC) is the most frequent primary liver malignancy and it is one of the most common cancer in the world with high mortality rate. Although there are epidemiological differences according to the geographical area considered, risk factors for the development of HCC include chronic hepatitis B and C, hepatic steatosis, alcohol consumption, genetic factors and liver inflammation or injury [1]. Patients with early HCC, who receive potentially curative therapy (liver transplantation or resection) reach 5-year survival rates near 70%; on the other hand patients with advanced HCC have a median survival of less than 1 year. An early diagnosis is therefore fundamental to improve survival. Imaging is pivotal in the management of HCC allowing screening populations at risk, confirming the diagnosis, guiding therapy, following up and aims to characterize the tumor and to define the remote extent. Many cases of HCC are diagnosed via imaging as (computed tomography) CT or (magnetic resonance) MRI, with several grading or scoring systems available including LI-RADS and OPTN-UNOS [2,3,4]. For example, LI-RADS systems offers the opportunity to report imaging in terms of arterial enhancement, washout appearance, capsule appearance, diameters and threshold growth to categorize liver lesions in terms of malignancy probability; when applied to MRI imaging, LI-RADS demonstrated a strong interobserver agreement [3, 4].

Surgical resection and liver transplantation are the mainstay of treatment, offering the best chance of cure and early diagnosis usually results in a better outcome. Trans-arterial chemioembolization (TACE) and radiofrequency ablation (RFA) are also important therapeutic techniques used for treatment management of HCC [1].

In this context, positron emission tomography (PET) with several positron emitters radiopharmaceuticals has been used to investigate patients with HCC [5]. Radiolabelled Gallium-68 (68Ga) or Fluorine-18 (18F) prostate-specific membrane antigen (PSMA)-based positron emission tomography/computed tomography or magnetic resonance imaging (PET/CT or PET/MRI) are imaging techniques normally used for the evaluation and the diagnosis of prostate cancer (PCa) lesions. PSMA-based imaging is usually performed for the initial staging of intermediate to high risk PCa; restaging after biochemical disease relapse (rising prostate-specific antigen levels) in patients with prior radical prostatectomy or radical external beam radiation are also important field of application [6,7,8].

PSMA has recently been suggested as a target for radionuclide imaging and treatment of PCa [9, 10]. Human PSMA is a metalloenzyme containing zinc composed of 750 amino acids, with a 3-part structure consisting of a large extracellular domain, a transmembrane portion and an intracellular component. PSMA is normally internalized in PCa cells with a ligand-binding process by clathrin-coated pits and subsequent endocytosis, making it a useful target for diagnostic and therapeutic applications in nuclear medicine. Moreover, it has been demonstrated that PSMA can be expressed by the neovasculature of many solid tumors (for example gastrointestinal neoplasms) and also in some non-neoplastic conditions [11,12,13,14,15,16,17,18,19,20,21].

The aim of this review is to evaluate the possible diagnostic role of radiolabelled PSMA PET/CT or PET/MRI in patients with HCC by summarizing the available literature data.


Search strategy

A wide literature search of the PubMed/MEDLINE, Scopus, Embase and Cochrane library databases was made to find significant published articles about the role of radiolabelled PSMA PET/CT or PET/MRI in patients affected by HCC. We used a search algorithm that was based on a combination of the terms: (a) ‘‘PSMA” OR “prostate-specific membrane antigen” AND (b) “hepatocellular carcinoma” OR “HCC”. No beginning date limit was applied; the search was updated until September 3rd 2020. Only articles in the English language were considered; pre-clinical or non in-vivo studies, conference proceedings, reviews and editorial were excluded. To expand our search, references of the retrieved articles were also screened for additional papers. All literature studies collected were managed using EndNote Web 3.3.

Study selection

All articles reporting patients with HCC evaluated by radiolabelled PSMA PET/CT or PET/MRI in clinical setting were eligible for inclusion. Two researchers independently reviewed the titles and abstracts of the retrieved articles. The same two researchers then independently reviewed the full-text version of the remaining articles to determine their eligibility for inclusion.

Data abstraction

For each included study, information was collected concerning the basic study (author names, year of publication, country of origin, type of study) and PET device used (PET/CT or PET/MRI), number of patients evaluated, number of patients who underwent further investigations and malignancies detected. The main findings of the articles included in this review are reported in the Results.


Literature search

A total of 55 articles were extrapolated with the computer literature search and by reviewing the titles and abstracts 43 of them were excluded because the reported data were not within the field of interest of this review. Twelve articles were selected and retrieved in full-text version [22,23,24,25,26,27,28,29,30,31,32,33]; one additional study was found screening the references of these articles [34]. A total of 13 articles were then included in the systematic review [22,23,24,25,26,27,28,29,30,31,32,33,34] (Fig. 1).

Fig. 1

Flow chart of the search of eligible studies on the diagnostic performance of [68 Ga]Ga-PSMA PET/CT for the detection of HCC

Qualitative analysis (systematic review)

Findings of several studies have shown that radiolabelled PSMA PET imaging may identify HCC. The characteristics of the studies and results are briefly presented in Tables 1 and 2.

Table 1 Characteristics of studies about radiolabelled PSMA
Table 2 PSMA results and final diagnosis


Several PET tracers have been explored for potential use in detection of HCC, including 18F-fluorodeoxyglucose ([18F]FDG), [18F]F- and [11C]C-choline and [11C]C-acetate. The detection rate of HCC by [18F]FDG PET/CT is generally low with the exception of poorly differentiated histotype; the reason for this suboptimal rate is thought to be a combination of variable expression of glucose transporters and glycolytic enzymes in HCC. High background liver uptake is also a known reason. Normally, [18F]FDG uptake by cells is mediated by facilitative glucose transporters (GLUT), mainly 1 and 3; when inside the cell [18F]FDG is phosphorylated by the hexokinase enzyme into [18F]FDG-6-phosphate. As known, cancer cells are characterized by increased levels of GLUT1 and GLUT3 expression, as well as high levels of hexokinase and phosphorylation activity, resulting in high levels of [18F]FDG uptake. Once inside cells, [18F]FDG-6-phosphate cannot be metabolized in the oxidative or glycolitic pathways, unlike glucose-6-phosphate. Many cancer cells have a low expression of glucose-6-phosphatase and therefore glucose-6-phosphate or [18F]FDG-6-phosphate are dephosphorylated only in small quantity, remaining trapped within the cell. As a result, [18F]FDG-6-phosphate can be detected by PET [35].

In normal liver cells, glucose-6-phosphate or [18F]FDG-6-phosphate can undergo dephosphorylation and can therefore exit the cells. Glucose-6-phosphatase concentration is normally high in liver cells and this fact is responsible for its mild FDG uptake [35]. Regarding enzymatic expression, well-differentiated HCC is similar to normal liver and this could be the reason for its mild appearance when using [18F]FDG; this is the reason for the impairment of lesion detectability and the low sensitivity of [18F]FDG PET or PET/CT. Instead, the higher levels [18F]FDG uptake by moderately to poorly differentiated HCC are the result of low levels of glucose-6-phosphatase and high levels of hexokinase [36,37,38,39]. In this context, it is clear that a negative [18F]FDG PET/CT scan is not able to exclude HCC and, moreover, it has been considered as a negative prognostic marker in patients affected by this disease [40,41,42].

In this scenario, new tracers for the evaluation of well-differentiated HCC have been proposed and are currently desirable, to improve the low sensitivity of [18F]FDG. Radiolabelled choline is a tracer used to evaluate lipid metabolism and its application in HCC is based on the presence of high expression of choline, as demonstrated by proton MR spectroscopy [43]. Malignant tumor are characterized by high proliferation ratio and increased metabolism of membrane cell compounds, resulting in high uptake of labeled choline. Despite the small amount of available data, good results have been reported by [11C]C- or [18F]F-choline for HCC assessment and pooled estimated detection rate reported in literature is 84%. Radiolabelled choline has shown better performance than [18F]FDG in the detection of HCC, especially in well to moderately differentiated lesions; conversely [18F]FDG seems to be more useful in the evaluation of poorly differentiated and higher-stage HCC [44].

Recently PET/CT with PSMA has been considered for the detection and the evaluation of HCC. A wide amount of large and well-designed studies addressing the role of radiolabelled PSMA PET/CT imaging targeting have been produced, but the expression of this protein on tumors other than PCa are lacking. In this context, the direction of the literature is to give an expansion to the potential of this radiopharmaceutical in this setting.

PSMA is a type II transmembrane protein normally expressed by prostate tissue and has significant overexpression by most PCa cells. However, not only prostate tissue can express PSMA [11,12,13,14,15,16,17,18,19]; pathophysiological processes other than PCa, such as the neovasculature of multiple malignant lesions, are able to overexpress this protein.

Many normal tissue types (liver, kidney, breast, salivary glands, lacrimal glands and prostate tissue) and tumor hystotipes other than PCa express PSMA, mostly on endothelial cells of tumor vessels; in this context, this radiotracer is being considered as a potential diagnostic tool in many tumor types.

The majority of HCC shows high levels of PSMA expression on tumor vessels and on canalicular membrane of cells [26, 28] and therefore important implications for PSMA-targeted imaging and therapy arise. PSMA-targeted imaging of HCC in clinical practice has been evaluated only by a few studies and most of these studies are case reports [22, 23, 27,28,29,30,31,32,33,34], probably because of the small number of centers that currently use radiolabelled PSMA PET/CT or PET/MRI, resulting in a reduction of the population of patients overall studied.

Notably, beyond the available case reports, three prospective studies confirmed the radiolabelled PSMA avidity by HCC. Kesler et al. [24] prospectively analyzed 7 patients with a new diagnosis of HCC with 41 liver lesions: 37 suspected malignant lesions and 4 regenerative nodules. Patients underwent both [18F]FDG and [68Ga]Ga-PSMA PET/CT. Thirty-six of the 37 tumor lesions and none of the regenerative nodules showed elevated [68Ga]Ga-PSMA uptake. Moreover, in 2 of the 7 patients [68Ga]Ga-PSMA PET/CT identified unexpected extrahepatic metastases.[68Ga]Ga-PSMA PET/CT was demonstrated to be superior to [18F]FDG PET/CT for imaging patients with HCC and a potential novel modality for imaging. Interestingly, the authors also compared [68Ga]Ga-PSMA uptake with contrast-enhanced CT (ceCT) results reporting that tracer uptake was significantly higher in enhancing tumor areas than in nonenhancing. Moreover, they reported a correlation between PSMA uptake and histological grade of vascularization.

Less enthusiastic results have been reported by Kuyumcu et al. [25]: 19 patients with a previous diagnosis of HCC who underwent [18F]FDG PET as part of restaging procedure also underwent [68Ga]Ga-PSMA PET imaging.[18F]FDG PET was positive in 15 patients while 16 patients demonstrated PSMA expression. The only extrahepatic finding was one metastatic lymph node identified by both tracers. On a visual and semi-quantitative comparative evaluation, the radiopharmaceutical uptake was higher with PSMA in 9 patients, higher with [18F]FDG in 4 cases and similar among the two tracers in 3 patients. One of the [18F]FDG positive patients was PSMA negative whereas two patients were PSMA positive but [18F]FDG negative. Heterogeneous uptake pattern was observed in three patients. The authors concluded that advanced HCC can be evaluated by [68Ga]Ga-PSMA PET but this imaging method is not clearly superior to [18F]FDG PET; however it has been reported as potentially useful for identifying HCC patients with restricted therapeutic options. Moreover, maximum standardized uptake value body weight max (SUVmax) of [68Ga]Ga-PSMA PET/CT scan showed medium strength of correlation with overall survival of patients.

Recently, Kunikowska et al. [26] enrolled 15 patients in their prospective study, 10 with newly diagnosed HCC and 5 with recurrence, to evaluate the feasibility of using PET/CT with [68Ga]Ga-PSMA-11 in HCC. They reported uptake in 44 total lesions (38 located in the liver and 6 metastatic ones) and moreover they reported tumor-to-liver ratio (TLR) as 3.6 ± 2.1 while SUVmax of the lesions was 13.5 ± 7.1; no significant differences in terms of SUVs or TLR was demonstrated between newly and previously diagnosed patient. A comparison with contrast-enhanced CT or MRI was also performed by the authors, reporting that PSMA uptake was present in contrast-enhancing part of the tumor while in necrotic parts it was not present, such as previously demonstrated [24]; moreover [68Ga]Ga-PSMA-11 PET/CT demonstrated more lesions in the liver than CT or MR leading to a change in previously planned treatment. The authors also reported that PET/CT with PSMA did not show false positive findings, compared to hystopathology.

To the best of our knowledge this is the first systematic review to evaluate the diagnostic performance of radiolabelled PSMA PET/CT or PET/MRI in HCC. As a consequence, considering the very low number of reports and patients analyzed, no high quality evidence could be drawn about the role of radiolabelled PSMA in HCC. Further studies and prospective large trials are needed to clarify the real clinical and diagnostic role of radiolabelled PSMA in this field and its possible position in the diagnostic flow-chart. Overall, available literature data demonstrate that HCC are radiolabelled PSMA-avid tumors. These insights, if confirmed, could open up the way to a possible future use of radiolabelled PSMA PET/CT or PET/MRI in this particular type of tumors.


Despite the limitation of our review due to the few studies currently available and to the very low number of patients analyzed, it can be concluded that radiolabelled PSMA is not specific for PCa, as several benign and malignant lesions have been reported to show a relevant expression, especially in tumor-associated endothelial cells. Radiolabelled PSMA imaging could be a valuable tool in detecting HCC and it could be better than [18F]FDG PET/CT, especially in well to moderately differentiated lesions. Dual tracer PET imaging should be considered to increase the diagnostic accuracy. Large clinical trials and cost-effectiveness analyses on the use of radiolabelled PSMA or dual tracer PET imaging in this setting are desirable to strengthen the usefulness of these functional imaging methods; this analysis could clarify the real clinical and diagnostic role of radiolabelled PSMA PET and its possible position in the imaging flow-chart.

Availability of data and materials

The data supporting the findings of the article is available in the Pubmed, Scopus, Embase, Cochrane Library at:,,,


  1. 1.

    Kulik L, El-Serag HB (2019) Epidemiology and management of hepatocellular carcinoma. Gastroenterology 156:477–491

    Article  Google Scholar 

  2. 2.

    Ronot M, Purcell Y, Vilgrain V (2019) Hepatocellular carcinoma: current imaging modalities for diagnosis and prognosis. Dig Dis Sci 64:934–950

    CAS  Article  Google Scholar 

  3. 3.

    Abdel Razek AAK, El-Serougy LG, Saleh GA, Shabana W, Abd El-Wahab R (2020) Liver imaging reporting and data system version 2018: what radiologists need to know. J Comput Assist Tomogr. 44(2):168–177

    Article  Google Scholar 

  4. 4.

    Abdel Razek AAK, El-Serougy LG, Saleh GA, Abd-El-Wahab R, Shabana W (2020) Interobserver agreement of magnetic resonance imaging of liver imaging reporting and data system version 2018. J Comput Assist Tomogr. 44(1):118–123

    Article  Google Scholar 

  5. 5.

    Haug AR (2017) Imaging of primary liver tumors with positron-emission tomography. Q J Nucl Med Mol Imaging 61:292–300

    PubMed  Google Scholar 

  6. 6.

    Treglia G, Annunziata S, Pizzuto DA, Giovanella L, Prior JO, Ceriani L (2019) Detection rate of (18)F-labeled PSMA PET/CT in biochemical recurrent prostate cancer: a systematic review and a meta-analysis. Cancers 11:e710

    Article  Google Scholar 

  7. 7.

    Wu H, Xu T, Wang X, Yu YB, Fan ZY, Li DX, Luo L, Yang XC, Jiao W, Niu HT (2019) Diagnostic performance of 68Gallium labelled prostate-specific membrane antigen positron emission tomography/computed tomography and magnetic resonance imaging for staging the prostate cancer with intermediate or high risk prior to radical prostatectomy: a systematic review and meta-analysis. World J Mens Health.

    Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Perera M, Papa N, Roberts M, Williams M, Udovicich C, Vela I, Christidis D, Bolton D, Hofman MS, Lawrentschuk N, Murphy DG (2019) Gallium-68 prostate-specific membrane antigen positron emission tomography in advanced prostate cancer-updated diagnostic utility, sensitivity, specificity, and distribution of prostate-specific membrane antigen-avid lesions: a systematic review and meta-analysis. Eur Urol.

    Article  PubMed  Google Scholar 

  9. 9.

    Afshar-Oromieh A, Avtzi E, Giesel FL, Holland-Letz T, Linhart HG, Eder M, Eisenhut M, Boxler S, Hadaschik BA, Kratochwil C, Weichert W, Kopka K, Debus J, Haberkorn U (2015) The diagnostic value of PET/CT imaging with the (68)Ga-labelled PSMA ligand HBED-CC in the diagnosis of recurrent prostate cancer. Eur J Nucl Med Mol Imaging 42:197–209

    CAS  Article  Google Scholar 

  10. 10.

    Kratochwil C, Giesel FL, Eder M, Afshar-Oromieh A, Benešová M, Mier W, Kopka K, Haberkorn U (2015) [(177)Lu]Lutetium-labelled PSMA ligand-induced remission in a patient with metastatic prostate cancer. Eur J Nucl Med Mol Imaging 42:987–988

    Article  Google Scholar 

  11. 11.

    Chang SS, Reuter VE, Heston WD, Bander NH, Grauer LS, Gaudin PB (1999) Five different anti-prostate-specific membrane antigen (PSMA) antibodies confirm PSMA expression in tumor-associated neovasculature. Cancer Res 59:3192–3198

    CAS  PubMed  Google Scholar 

  12. 12.

    Haffner MC, Kronberger IE, Ross JS, Sheehan CE, Zitt M, Mühlmann G, Ofner D, Zelger B, Ensinger C, Yang XJ, Geley S, Margreiter R, Bander NH (2009) Prostate-specific membrane antigen expression in the neovasculature of gastric and colorectal cancers. Hum Pathol 40:1754–1761

    CAS  Article  Google Scholar 

  13. 13.

    Kinoshita Y, Kuratsukuri K, Landas S, Imaida K, Rovito PM Jr, Wang CY, Haas GP (2006) Expression of prostate-specific membrane antigen in normal and malignant human tissues. World J Surg 30:628–636

    Article  Google Scholar 

  14. 14.

    Hofman MS, Hicks RJ, Maurer T, Eiber M (2018) Prostate-specific membrane antigen PET: clinical utility in prostate cancer, normal patterns, pearls, and pitfalls. Radiographics 38:200–217

    Article  Google Scholar 

  15. 15.

    Verburg FA, Krohn T, Heinzel A, Mottaghy FM, Behrendt FF (2015) First evidence of PSMA expression in differentiated thyroid cancer using [68Ga]PSMA-HBED-CC PET/CT. Eur J Nucl Med Mol Imaging 42:1622–1623

    Article  Google Scholar 

  16. 16.

    Taywade SK, Damle NA, Bal CS (2016) PSMA expression in papillary thyroid carcinoma opening a new horizon in management of thyroid cancer? Clin Nucl Med 41:e263-265

    Article  Google Scholar 

  17. 17.

    Noss KR, Wolfe SA, Grimes SR (2002) Upregulation of prostate specific membrane antigen/folate hydrolase transcription by an enhancer. Gene 285:247–256

    CAS  Article  Google Scholar 

  18. 18.

    Bourgeois S, Gykiere P, Goethals L, Everaert H, De Geeter FW (2016) Aspecific uptake of 68GA-PSMA in paget disease of the bone. Clin Nucl Med 41:877–878

    Article  Google Scholar 

  19. 19.

    Bertagna F, Albano D, Giovanella L, Bonacina M, Durmo R, Giubbini R, Treglia G (2019) 68Ga-PSMA PET thyroid incidentalomas. Hormones (Athens).

    Article  Google Scholar 

  20. 20.

    Bertagna F, Albano D, Cerudelli E, Gazzilli M, Tomasini D, Bonù M, Giubbini G, Treglia G (2020) Radiolabelled PSMA PET/CT in breast cancer. A systematic review. Nucl Med Rev 23:1–4

    Google Scholar 

  21. 21.

    Bertagna F, Albano D, Cerudelli E, Gazzilli M, Giubbini R, Treglia G (2019) Potential of radiolabelled PSMA PET/CT or PET/MRI diagnostic procedures in gliomas/glioblastomas. Curr Radiopharm.

    Article  Google Scholar 

  22. 22.

    Erhamamci S, Aslan N (2020) Primary hepatocellular carcinoma with intense 68Ga-PSMA uptake but slight 18F-FDG uptake on PET/CT imaging. Clin Nucl Med 45:e176–e177

    Article  Google Scholar 

  23. 23.

    Das J, Ray S, Tapadia R, Midha D, Mallick I (2020) Prostate-specific membrane antigen-expressing hepatic lesion: metastatic or hepatocellular carcinoma. Indian J Nucl Med 35:58–60

    Article  Google Scholar 

  24. 24.

    Kesler M, Levine C, Hershkovitz D, Mishani E, Menachem Y, Lerman H, Zohar Y, Shibolet O, Even-Sapir E (2019) 68Ga-PSMA is a novel PET-CT tracer for imaging of hepatocellular carcinoma: a prospective pilot study. J Nucl Med 60:185–191

    CAS  Article  Google Scholar 

  25. 25.

    Kuyumcu S, Has-Simsek D, Iliaz R, Sanli Y, Buyukkaya F, Akyuz F, Turkmen C (2019) Evidence of prostate-specific membrane antigen expression in hepatocellular carcinoma using 68Ga-PSMA PET/CT. Clin Nucl Med 44:702–706

    Article  Google Scholar 

  26. 26.

    Kunikowska J, Cieślak B, Gierej B, Patkowski W, Kraj L, Kotulski M, Zieniewicz K, Królicki L (2020) [68 Ga]Ga-prostate-specific membrane antigen PET/CT: a novel method for imaging patients with hepatocellular carcinoma. Eur J Nucl Med Mol Imaging.

    Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Perez PM, Flavell RR, Kelley RK, Umetsu S, Behr SC (2019) Heterogeneous Uptake of 18F-FDG and 68Ga-PSMA-11 in Hepatocellular Carcinoma. Clin Nucl Med 44:e133–e135

    Article  Google Scholar 

  28. 28.

    Tolkach Y, Goltz D, Kremer A, Ahmadzadehfar H, Bergheim D, Essler M, Lam M, de Keizer B, Fischer HP, Kristiansen G (2019) Prostate-specific membrane antigen expression in hepatocellular carcinoma: potential use for prognosis and diagnostic imaging. Oncotarget 10:4149–4160

    Article  Google Scholar 

  29. 29.

    Huang HL, Loh TJZ, Chow PKH (2018) A case of well-differentiated hepatocellular carcinoma identified on gallium-68 prostate-specific membrane antigen positron emission tomography/computed tomography. World J Nucl Med 17:102–105

    PubMed  PubMed Central  Google Scholar 

  30. 30.

    Alipour R, Gupta S, Trethewey S (2017) 68Ga-PSMA uptake in combined hepatocellular cholangiocarcinoma with skeletal metastases. Clin Nucl Med. 42:e452–e453

    Article  Google Scholar 

  31. 31.

    Patel D, Loh H, Le K, Stevanovic A, Mansberg R (2017) Incidental detection of hepatocellular carcinoma on 68Ga-labeled prostate-specific membrane antigen PET/CT. Clin Nucl Med 42:881–884

    CAS  Article  Google Scholar 

  32. 32.

    Sasikumar A, Joy A, Nanabala R, Pillai MR, Thomas B, Vikraman KR (2016) (68)Ga-PSMA PET/CT imaging in primary hepatocellular carcinoma. Eur J Nucl Med Mol Imaging. 43:795–796

    Article  Google Scholar 

  33. 33.

    Taneja S, Taneja R, Kashyap V, Jha A, Jena A (2017) 68Ga-PSMA uptake in hepatocellular carcinoma. Clin Nucl Med 42:e69–e70

    Article  Google Scholar 

  34. 34.

    Soydal C, Alkan A, Ozkan E, Demirkazık A, Kucuk NO (2016) Ga-68 PSMA accumulation in hepatocellular carcinoma. J Gastroenterol Pancreatol Liver Disord 4:1–1

    Article  Google Scholar 

  35. 35.

    Tsurusaki M, Okada M, Kuroda H, Matsuki M, Ishii K, Murakami T (2014) Clinical application of 18F-fluorodeoxyglucose positron emission tomography for assessment and evaluation after therapy for malignant hepatic tumor. J Gastroenterol 49:46–56

    CAS  Article  Google Scholar 

  36. 36.

    Delbeke D, Martin WH, Sandler MP, Chapman WC, Wright JK Jr, Pinson CW (1998) Evaluation of benign vs malignant hepatic lesions with positron emission tomography. Arch Surg 133:510–515

    CAS  Article  Google Scholar 

  37. 37.

    Ho CL, Yu SC, Yeung DW (2003) 11C-acetate PET imaging in hepatocellular carcinoma and other liver masses. J Nucl Med 44:213–221

    PubMed  Google Scholar 

  38. 38.

    Böhm B, Voth M, Geoghegan J, Hellfritzsch H, Petrovich A, Scheele J, Gottschild D (2004) Impact of positron emission tomography on strategy in liver resection for primary and secondary liver tumors. J Cancer Res Clin Oncol 130:266–272

    Article  Google Scholar 

  39. 39.

    Vitola JV, Delbeke D, Sandler MP, Campbell MG, Powers TA, Wright JK et al (1996) Positron emission tomography to stage suspected metastatic colorectal carcinoma to the liver. Am J Surg 171:21–26

    CAS  Article  Google Scholar 

  40. 40.

    Pant V, Sen IB, Soin AS (2013) Role of 18F-FDG PET CT as an independent prognostic indicator in patients with hepatocellular carcinoma. Nucl Med Commun 34:749–757

    CAS  Article  Google Scholar 

  41. 41.

    Shiomi S, Nishiguchi S, Ishizu H, Iwata Y, Sasaki N, Tamori A, Habu D, Takeda T, Kubo S, Ochi H (2001) Usefulness of positron emission tomography with fluorine-18-fluorodeoxyglucose for predicting outcome in patients with hepatocellular carcinoma. Am J Gastroenterol 96:1877–1880

    CAS  Article  Google Scholar 

  42. 42.

    Kong YH, Han CJ, Lee SD, Sohn WS, Kim MJ, Ki SS, Kim J, Jeong SH, Kim YC, Lee JO, Cheon GJ, Choi CW, Lim SM (2004) Positron emission tomography with fluorine-18-fluorodeoxyglucose is useful for predicting the prognosis of patients with hepatocellular carcinoma. Korean J Hepatol 10:279–287

    PubMed  Google Scholar 

  43. 43.

    Li CW, Kuo YC, Chen CY, Kuo YT, Chiu YY, She FO, Liu GC (2005) Quantification of choline compounds in human hepatic tumors by proton MR spectroscopy at 3 T. Magn Reson Med 53:770–776

    CAS  Article  Google Scholar 

  44. 44.

    Bertagna F, Bertoli M, Bosio G, Biasiotto G, Sadeghi R, Giubbini R, Treglia G (2014) Diagnostic role of radiolabelled choline PET or PET/CT in hepatocellular carcinoma: a systematic review and meta-analysis. Hepatol Int 8:493–500

    Article  Google Scholar 

Download references


Open access funding provided by Università degli Studi di Brescia within the CRUI-CARE Agreement.

Author information




FD: literature search, data analysis and writing. DA: data analysis and editing. EC: data analysis. MG: data analysis and literature review. RG: editing. GT: literature search and editing. FB: content planning, literature search, data analysis, writing, literature review, editing and idea for the article.

Corresponding author

Correspondence to Francesco Dondi.

Ethics declarations

Conflict of interest

All The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors. All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2008.

Informed consent

Informed consent was obtained from all patients for being included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dondi, F., Albano, D., Cerudelli, E. et al. Radiolabelled PSMA PET/CT or PET/MRI in hepatocellular carcinoma (HCC): a systematic review. Clin Transl Imaging 8, 461–467 (2020).

Download citation


  • PSMA
  • HCC
  • Positron emission tomography
  • PET/CT