Pictorial review of the clinical applications of MIBG in neuroblastoma: current practices

Abstract

Purpose

Neuroblastoma is the most common extra-cranial solid tumor in pediatrics. The objective of this manuscript is to present an image-rich review of the presentation, diagnosis, staging and response assessment in individuals with neuroblastoma with special attention to the role of I-123 mIBG (meta-iodobenzylguanidine).

Methods

A literature search was performed in the PubMed and Scopus databases to identity articles published between 1980 and March 2020 regarding different aspects of neuroblastoma (presentation, diagnosis, pathologic classification, staging, and response monitoring). Different combinations of search terms were used including “neuroblastoma”, “presentation”, “diagnosis”, “staging”, “imaging”, “pathology”, “MIBG”, “FDG”, “norepinephrine transporter”, and “18F DOPA”. The references of the resultant articles were also used to identify additional manuscripts.

Results

A total of 101 key articles were identified that discussed the spectrum of presentation, diagnosis, staging and response assessment in individuals with neuroblastoma. These articles form the basis of this manuscript.

Conclusion

Iodine-123-labeled meta-iodobenzylguanidine (mIBG) is the cornerstone of functional imaging for staging, therapeutic response monitoring, prognostication, and the detection of recurrence in patients with neuroblastoma. MIBG images are interpreted both qualitatively and semiquantitatively. The International Neuroblastoma Risk Group Staging System and the International Neuroblastoma Staging System are used to stage the disease extent before and after surgical resection, respectively. The Revised International Neuroblastoma Response Criteria, updated in 2017, stratify the treatment response based on findings on functional (with mIBG or if mIBG non-avid with [18F]-fluorodeoxyglucose) and anatomical (computed tomography or magnetic resonance) imaging and bone marrow aspirates.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

© SNMMI [86]

Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

References

  1. 1.

    Bronner ME, Simoes-Costa M (2016) The neural crest migrating into the twenty-first century. Curr Top Dev Biol 116:115–134. https://doi.org/10.1016/bs.ctdb.2015.12.003

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Von Moll L, McEwan AJ, Shapiro B et al (1987) Iodine-131 MIBG scintigraphy of neuroendocrine tumors other than pheochromocytoma and neuroblastoma. J Nucl Med 28:979–988

    Google Scholar 

  3. 3.

    Bombardieri E, Giammarile F, Aktolun C et al (2010) 131I/123I-metaiodobenzylguanidine (mIBG) scintigraphy: procedure guidelines for tumour imaging. Eur J Nucl Med Mol Imaging 37:2436–2446. https://doi.org/10.1007/s00259-010-1545-7

    Article  PubMed  Google Scholar 

  4. 4.

    Agrawal A, Rangarajan V, Shah S et al (2018) MIBG (metaiodobenzylguanidine) theranostics in pediatric and adult malignancies. Br J Radiol 91:20180103. https://doi.org/10.1259/bjr.20180103

    Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Johnsen JI, Dyberg C, Wickstrom M (2019) Neuroblastoma-a neural crest derived embryonal malignancy. Front Mol Neurosci 12:9. https://doi.org/10.3389/fnmol.2019.00009

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Park JR, Eggert A, Caron H (2010) Neuroblastoma: biology, prognosis, and treatment. Hematol Oncol Clin N Am 24:65–86. https://doi.org/10.1016/j.hoc.2009.11.011

    Article  Google Scholar 

  7. 7.

    Park Y, Lee HJ, Jung YJ et al (2018) Prenatally detected thoracic neuroblastoma. Obstet Gynecol Sci 61:278–281. https://doi.org/10.5468/ogs.2018.61.2.278

    Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Jnah AJ, Evans SK, Sewell K, Trembath A (2019) Neuroblastoma in a neonate: a case report. Neonatal Netw 38:341–347. https://doi.org/10.1891/0730-0832.38.6.341

    Article  PubMed  Google Scholar 

  9. 9.

    Vo KT, Matthay KK, Neuhaus J et al (2014) Clinical, biologic, and prognostic differences on the basis of primary tumor site in neuroblastoma: a report from the international neuroblastoma risk group project. J Clin Oncol 32:3169–3176. https://doi.org/10.1200/JCO.2014.56.1621

    Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Rainusso N, Seghers V, Egler R et al (2019) Neuroblastoma of the bone and bone marrow without an apparent primary site: report of 4 cases with long-term follow-up. Pediatr Dev Pathol 22:329–333. https://doi.org/10.1177/1093526618822597

    Article  PubMed  Google Scholar 

  11. 11.

    Stanescu LA, Parisi MT (2010) “Raccoon eyes” revisited. Pediatr Radiol 40(Suppl 1):S170–170. https://doi.org/10.1007/s00247-010-1865-6

    Article  PubMed  Google Scholar 

  12. 12.

    De Bernardi B, Di Cataldo A, Garaventa A et al (2019) Stage 4 s neuroblastoma: features, management and outcome of 268 cases from the Italian Neuroblastoma Registry. Ital J Pediatr 45:8. https://doi.org/10.1186/s13052-018-0599-1

    Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Angstman KB, Miser JS, Franz WB (1990) Neuroblastoma. Am Fam Phys 41:238–244

    CAS  Google Scholar 

  14. 14.

    Rudnick E, Khakoo Y, Antunes NL et al (2001) Opsoclonus-myoclonus-ataxia syndrome in neuroblastoma: clinical outcome and antineuronal antibodies-a report from the Children's Cancer Group Study. Med Pediatr Oncol 36:612–622. https://doi.org/10.1002/mpo.1138

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Golden CB, Feusner JH (2002) Malignant abdominal masses in children: quick guide to evaluation and diagnosis. Pediatr Clin N Am 49:1369-vii–1392. https://doi.org/10.1016/s0031-3955(02)00098-6

    Article  Google Scholar 

  16. 16.

    Swift CC, Eklund MJ, Kraveka JM, Alazraki AL (2018) Updates in diagnosis, management, and treatment of neuroblastoma. Radiographics 38:566–580. https://doi.org/10.1148/rg.2018170132

    Article  PubMed  Google Scholar 

  17. 17.

    Parisi MT, Hattner RS, Matthay KK et al (1993) Optimized diagnostic strategy for neuroblastoma in opsoclonus-myoclonus. J Nucl Med 34:1922–1926

    CAS  PubMed  Google Scholar 

  18. 18.

    Park JR, Bagatell R, Cohn SL et al (2017) Revisions to the International neuroblastoma response criteria: a consensus statement from the national cancer institute clinical trials planning meeting. J Clin Oncol 35:2580–2587. https://doi.org/10.1200/JCO.2016.72.0177

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Tolbert VP, Matthay KK (2018) Neuroblastoma: clinical and biological approach to risk stratification and treatment. Cell Tissue Res 372:195–209. https://doi.org/10.1007/s00441-018-2821-2

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    D'Ambrosio N, Lyo JK, Young RJ et al (2010) Imaging of metastatic CNS neuroblastoma. AJR Am J Roentgenol 194:1223–1229. https://doi.org/10.2214/AJR.09.3203

    Article  PubMed  Google Scholar 

  21. 21.

    Monclair T, Brodeur GM, Ambros PF et al (2009) The International Neuroblastoma Risk Group (INRG) staging system: an INRG Task Force report. J Clin Oncol 27:298–303. https://doi.org/10.1200/JCO.2008.16.6876

    Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    DuBois SG, Mody R, Naranjo A et al (2017) MIBG avidity correlates with clinical features, tumor biology, and outcomes in neuroblastoma: a report from the Children's Oncology Group. Pediatr Blood Cancer. https://doi.org/10.1002/pbc.26545

    Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Shimada H, Ambros IM, Dehner LP et al (1999) The International Neuroblastoma Pathology Classification (the Shimada system). Cancer 86:364–372. https://doi.org/10.1002/(SICI)1097-0142(19990715)86:2<364:AID-CNCR21>3.0.CO;2-7

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Brodeur GM (2018) Spontaneous regression of neuroblastoma. Cell Tissue Res 372:277–286. https://doi.org/10.1007/s00441-017-2761-2

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Wieland DM, Wu J, Brown LE et al (1980) Radiolabeled adrenergi neuron-blocking agents: adrenomedullary imaging with [131I]iodobenzylguanidine. J Nucl Med 21:349–353

    CAS  PubMed  Google Scholar 

  26. 26.

    Wieland DM, Brown LE, Tobes MC et al (1981) Imaging the primate adrenal medulla with [123I] and [131I] meta-iodobenzylguanidine: concise communication. J Nucl Med 22:358–364

    CAS  PubMed  Google Scholar 

  27. 27.

    Sisson JC, Frager MS, Valk TW et al (1981) Scintigraphic localization of pheochromocytoma. N Engl J Med 305:12–17. https://doi.org/10.1056/NEJM198107023050103

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Hattner RS, Huberty JP, Engelstad BL et al (1984) Localization of m-iodo(131I)benzylguanidine in neuroblastoma. AJR Am J Roentgenol 143:373–374. https://doi.org/10.2214/ajr.143.2.373

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Kimmig B, Brandeis WE, Eisenhut M et al (1984) Scintigraphy of a neuroblastoma with I-131 meta-iodobenzylguanidine. J Nucl Med 25:773–775

    CAS  PubMed  Google Scholar 

  30. 30.

    Zhang Y, Wang J (2020) Targeting uptake transporters for cancer imaging and treatment. Acta Pharm Sin B 10:79–90. https://doi.org/10.1016/j.apsb.2019.12.005

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Pandit-Taskar N, Modak S (2017) Norepinephrine transporter as a target for imaging and therapy. J Nucl Med 58:39S–53S. https://doi.org/10.2967/jnumed.116.186833

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Lin L, Yee SW, Kim RB, Giacomini KM (2015) SLC transporters as therapeutic targets: emerging opportunities. Nat Rev Drug Discov 14:543–560. https://doi.org/10.1038/nrd4626

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Mao Q, Lai Y, Wang J (2018) Drug transporters in xenobiotic disposition and pharmacokinetic prediction. Drug Metab Dispos 46:561–566. https://doi.org/10.1124/dmd.118.081356

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Kogai T, Brent GA (2012) The sodium iodide symporter (NIS): regulation and approaches to targeting for cancer therapeutics. Pharmacol Ther 135:355–370. https://doi.org/10.1016/j.pharmthera.2012.06.007

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Pandit-Taskar N, Zanzonico P, Staton KD et al (2018) Biodistribution and dosimetry of (18)F-meta-fluorobenzylguanidine: a first-in-human PET/CT imaging study of patients with neuroendocrine malignancies. J Nucl Med 59:147–153. https://doi.org/10.2967/jnumed.117.193169

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Franzius C, Hermann K, Weckesser M et al (2006) Whole-body PET/CT with 11C-meta-hydroxyephedrine in tumors of the sympathetic nervous system: feasibility study and comparison with 123I-MIBG SPECT/CT. J Nucl Med 47:1635–1642

    PubMed  Google Scholar 

  37. 37.

    Vavere A, Butch E, Shulkin B, Snyder S (2014) Synthesis and preliminary validation of 6-[18F]-Fluorodopamine ([18F]FDA) as a PET tracer for neuroblastoma. J Nucl Med 55:1410

    Google Scholar 

  38. 38.

    Timmers HJLM, Hadi M, Carrasquillo JA et al (2007) The effects of carbidopa on uptake of 6–18F-Fluoro-L-DOPA in PET of pheochromocytoma and extraadrenal abdominal paraganglioma. J Nucl Med 48:1599–1606. https://doi.org/10.2967/jnumed.107.042721

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Vaidyanathan G, Zalutsky MR (1992) 1-(m-[211At]astatobenzyl)guanidine: synthesis via astato demetalation and preliminary in vitro and in vivo evaluation. Bioconjug Chem 3:499–503. https://doi.org/10.1021/bc00018a006

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Beijst C, de Keizer B, Lam MGEH et al (2017) A phantom study: should (124) I-mIBG PET/CT replace (123) I-mIBG SPECT/CT? Med Phys 44:1624–1631. https://doi.org/10.1002/mp.12202

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Lee C-L, Wahnishe H, Sayre GA et al (2010) Radiation dose estimation using preclinical imaging with 124I-metaiodobenzylguanidine (MIBG) PET. Med Phys 37:4861–4867. https://doi.org/10.1118/1.3480965

    Article  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Seo Y, Huh Y, Huang S-Y et al (2019) Technical note: simplified and practical pretherapy tumor dosimetry—a feasibility study for (131) I-MIBG therapy of neuroblastoma using (124) I-MIBG PET/CT. Med Phys 46:2477–2486. https://doi.org/10.1002/mp.13446

    Article  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Jager PL, Chirakal R, Marriott CJ et al (2008) 6-L-18F-fluorodihydroxyphenylalanine PET in neuroendocrine tumors: basic aspects and emerging clinical applications. J Nucl Med 49:573–586. https://doi.org/10.2967/jnumed.107.045708

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Fottner C, Helisch A, Anlauf M et al (2010) 6–18F-Fluoro-l-dihydroxyphenylalanine positron emission tomography is superior to 123I-metaiodobenzyl-guanidine scintigraphy in the detection of extraadrenal and hereditary pheochromocytomas and paragangliomas: correlation with vesicular monoamine transporter expression. J Clin Endocrinol Metab 95:2800–2810

    CAS  Article  Google Scholar 

  45. 45.

    LaBrosse EH, Comoy E, Bohuon C et al (1976) Catecholamine metabolism in neuroblastoma. J Natl Cancer Inst 57:633–638. https://doi.org/10.1093/jnci/57.3.633

    CAS  Article  PubMed  Google Scholar 

  46. 46.

    Kauhanen S, Seppänen M, Ovaska J et al (2009) The clinical value of [18F]fluoro-dihydroxyphenylalanine positron emission tomography in primary diagnosis, staging, and restaging of neuroendocrine tumors. Endocr Relat Cancer 16:255–265. https://doi.org/10.1677/ERC-08-0229

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    Jacobson AF, Deng H, Lombard J et al (2010) 123I-meta-iodobenzylguanidine scintigraphy for the detection of neuroblastoma and pheochromocytoma: results of a meta-analysis. J Clin Endocrinol Metab 95:2596–2606. https://doi.org/10.1210/jc.2009-2604

    CAS  Article  PubMed  Google Scholar 

  48. 48.

    Piccardo A, Lopci E, Conte M et al (2012) Comparison of 18F-dopa PET/CT and 123I-MIBG scintigraphy in stage 3 and 4 neuroblastoma: a pilot study. Eur J Nucl Med Mol Imaging 39:57–71

    CAS  Article  Google Scholar 

  49. 49.

    Piccardo A, Lopci E, Conte M et al (2013) PET/CT imaging in neuroblastoma. Q J Nucl Med Mol Imaging 57:29–39

    CAS  PubMed  Google Scholar 

  50. 50.

    Piccardo A, Puntoni M, Lopci E et al (2014) Prognostic value of 18F-DOPA PET/CT at the time of recurrence in patients affected by neuroblastoma. Eur J Nucl Med Mol Imaging 41:1046–1056

    Article  Google Scholar 

  51. 51.

    Piccardo A, Lopci E, Conte M et al (2014) Bone and lymph node metastases from neuroblastoma detected by 18F-DOPA-PET/CT and confirmed by posttherapy 131I-MIBG but negative on diagnostic 123I-MIBG scan. Clin Nucl Med 39:e80–e83. https://doi.org/10.1097/RLU.0b013e31827a0002

    Article  PubMed  Google Scholar 

  52. 52.

    Kong G, Hofman MS, Murray WK et al (2016) Initial experience with gallium-68 DOTA-Octreotate PET/CT and peptide receptor radionuclide therapy for pediatric patients with refractory metastatic neuroblastoma. J Pediatr Hematol Oncol 38:87–96. https://doi.org/10.1097/MPH.0000000000000411

    CAS  Article  PubMed  Google Scholar 

  53. 53.

    Gains JE, Bomanji JB, Fersht NL et al (2011) 177Lu-DOTATATE molecular radiotherapy for childhood neuroblastoma. J Nucl Med 52:1041–1047. https://doi.org/10.2967/jnumed.110.085100

    Article  PubMed  Google Scholar 

  54. 54.

    Gains JE, Moroz V, Aldridge MD et al (2020) A phase IIa trial of molecular radiotherapy with 177-lutetium DOTATATE in children with primary refractory or relapsed high-risk neuroblastoma. Eur J Nucl Med Mol Imaging 47:2348–2357. https://doi.org/10.1007/s00259-020-04741-x

    CAS  Article  PubMed  Google Scholar 

  55. 55.

    Parisi MT, Eslamy H, Park JR et al (2016) (1)(3)(1)I-metaiodobenzylguanidine theranostics in neuroblastoma: historical perspectives; practical applications. Semin Nucl Med 46:184–202. https://doi.org/10.1053/j.semnuclmed.2016.02.002

    Article  PubMed  Google Scholar 

  56. 56.

    Leung A, Shapiro B, Hattner R et al (1997) Specificity of radioiodinated MIBG for neural crest tumors in childhood. J Nucl Med 38:1352–1357

    CAS  PubMed  Google Scholar 

  57. 57.

    Marachelian A, Shimada H, Sano H et al (2012) The significance of serial histopathology in a residual mass for outcome of intermediate risk stage 3 neuroblastoma. Pediatr Blood Cancer 58:675–681. https://doi.org/10.1002/pbc.23250

    Article  PubMed  Google Scholar 

  58. 58.

    Bar-Sever Z, Biassoni L, Shulkin B et al (2018) Guidelines on nuclear medicine imaging in neuroblastoma. Eur J Nucl Med Mol Imaging 45:2009–2024. https://doi.org/10.1007/s00259-018-4070-8

    CAS  Article  PubMed  Google Scholar 

  59. 59.

    Jacobson AF, Travin MI (2015) Impact of medications on mIBG uptake, with specific attention to the heart: comprehensive review of the literature. J Nucl Cardiol 22:980–993. https://doi.org/10.1007/s12350-015-0170-z

    Article  PubMed  Google Scholar 

  60. 60.

    Kushner BH, Kramer K, Modak S, Cheung N-KV (2009) Sensitivity of surveillance studies for detecting asymptomatic and unsuspected relapse of high-risk neuroblastoma. J Clin Oncol 27:1041–1046. https://doi.org/10.1200/JCO.2008.17.6107

    Article  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Treves ST, Gelfand MJ, Fahey FH, Parisi MT (2016) 2016 update of the North American consensus guidelines for pediatric administered radiopharmaceutical activities. J Nucl Med 57:15N–18N

    Article  Google Scholar 

  62. 62.

    Bermo MS, Khalatbari H, Parisi MT (2018) Two signs indicative of successful access in nuclear medicine cerebrospinal fluid diversionary shunt studies. Pediatr Radiol 48:1130–1138. https://doi.org/10.1007/s00247-018-4150-8

    Article  PubMed  Google Scholar 

  63. 63.

    Rufini V, Giordano A, Di Giuda D et al (1995) [123I]MIBG scintigraphy in neuroblastoma: a comparison between planar and SPECT imaging. Q J Nucl Med 39:25–28

    CAS  PubMed  Google Scholar 

  64. 64.

    Rufini V, Fisher GA, Shulkin BL et al (1996) Iodine-123-MIBG imaging of neuroblastoma: utility of SPECT and delayed imaging. J Nucl Med 37:1464–1468

    CAS  PubMed  Google Scholar 

  65. 65.

    Rozovsky K, Koplewitz BZ, Krausz Y et al (2008) Added value of SPECT/CT for correlation of MIBG scintigraphy and diagnostic CT in neuroblastoma and pheochromocytoma. AJR Am J Roentgenol 190:1085–1090. https://doi.org/10.2214/AJR.07.2107

    Article  PubMed  Google Scholar 

  66. 66.

    Theerakulpisut D, Raruenrom Y, Wongsurawat N, Somboonporn C (2018) Value of SPECT/CT in diagnostic I-131 MIBG scintigraphy in patients with neuroblastoma. Nucl Med Mol Imaging 52:350–358. https://doi.org/10.1007/s13139-018-0532-y

    Article  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Liu B, Servaes S, Zhuang H (2018) SPECT/CT MIBG imaging is crucial in the follow-up of the patients with high-risk neuroblastoma. Clin Nucl Med 43:232–238. https://doi.org/10.1097/RLU.0000000000001984

    CAS  Article  PubMed  Google Scholar 

  68. 68.

    Hoogendam JP, Zweemer RP, Hobbelink MGG et al (2016) 99mTc-nanocolloid SPECT/MRI fusion for the selective assessment of nonenlarged sentinel lymph nodes in patients with early-stage cervical cancer. J Nucl Med 57:551–556. https://doi.org/10.2967/jnumed.115.164780

    CAS  Article  PubMed  Google Scholar 

  69. 69.

    Nakajo M, Shapiro B, Copp J et al (1983) The normal and abnormal distribution of the adrenomedullary imaging agent m-[I-131]iodobenzylguanidine (I-131 MIBG) in man: evaluation by scintigraphy. J Nucl Med 24:672–682

    CAS  PubMed  Google Scholar 

  70. 70.

    Sharp SE, Gelfand MJ, Shulkin BL (2011) Pediatrics: diagnosis of neuroblastoma. Semin Nucl Med 41:345–353. https://doi.org/10.1053/j.semnuclmed.2011.05.001

    Article  PubMed  Google Scholar 

  71. 71.

    Gelfand MJ (2004) 123I-MIBG uptake in the neck and shoulders of a neuroblastoma patient: damage to sympathetic innervation blocks uptake in brown adipose tissue. Pediatr Radiol 34:577–579. https://doi.org/10.1007/s00247-003-1136-x

    Article  PubMed  Google Scholar 

  72. 72.

    Goel SR, Ponzo F, Friedman KP (2009) Tetracyclic antidepressant causing altered biodistribution of MIBG. Radiol Case Rep 4:306

    Article  Google Scholar 

  73. 73.

    Ady N, Zucker JM, Asselain B et al (1995) A new 123I-MIBG whole body scan scoring method–application to the prediction of the response of metastases to induction chemotherapy in stage IV neuroblastoma. Eur J Cancer 31A:256–261. https://doi.org/10.1016/0959-8049(94)00509-4

    CAS  Article  PubMed  Google Scholar 

  74. 74.

    Messina JA, Cheng S-C, Franc BL et al (2006) Evaluation of semi-quantitative scoring system for metaiodobenzylguanidine (mIBG) scans in patients with relapsed neuroblastoma. Pediatr Blood Cancer 47:865–874. https://doi.org/10.1002/pbc.20777

    Article  PubMed  Google Scholar 

  75. 75.

    Lewington V, Lambert B, Poetschger U et al (2017) (123)I-mIBG scintigraphy in neuroblastoma: development of a SIOPEN semi-quantitative reporting, method by an international panel. Eur J Nucl Med Mol Imaging 44:234–241. https://doi.org/10.1007/s00259-016-3516-0

    CAS  Article  PubMed  Google Scholar 

  76. 76.

    Matthay KK, Edeline V, Lumbroso J et al (2003) Correlation of early metastatic response by 123I-metaiodobenzylguanidine scintigraphy with overall response and event-free survival in stage IV neuroblastoma. J Clin Oncol 21:2486–2491. https://doi.org/10.1200/JCO.2003.09.122

    Article  PubMed  Google Scholar 

  77. 77.

    Radovic B, Artiko V, Sobic-Saranovic D et al (2015) Evaluation of the SIOPEN semi-quantitative scoring system in planar simpatico-adrenal MIBG scintigraphy in children with neuroblastoma. Neoplasma 62:449–455. https://doi.org/10.4149/neo_2015_053

    CAS  Article  PubMed  Google Scholar 

  78. 78.

    Ladenstein R, Lambert B, Potschger U et al (2018) Validation of the mIBG skeletal SIOPEN scoring method in two independent high-risk neuroblastoma populations: the SIOPEN/HR-NBL1 and COG-A3973 trials. Eur J Nucl Med Mol Imaging 45:292–305. https://doi.org/10.1007/s00259-017-3829-7

    Article  PubMed  Google Scholar 

  79. 79.

    Cerny I, Prasek J, Kasparkova H (2016) Superiority of SPECT/CT over planar 123I-mIBG images in neuroblastoma patients with impact on Curie and SIOPEN score values. Nuklearmedizin 55:151–157. https://doi.org/10.3413/Nukmed-0743-15-05

    Article  PubMed  Google Scholar 

  80. 80.

    Brady SL, Shulkin BL (2019) Analysis of quantitative [I-123] mIBG SPECT/CT in a phantom and in patients with neuroblastoma. EJNMMI Phys 6:31. https://doi.org/10.1186/s40658-019-0267-6

    Article  PubMed  PubMed Central  Google Scholar 

  81. 81.

    Suc A, Lumbroso J, Rubie H et al (1996) Metastatic neuroblastoma in children older than one year: prognostic significance of the initial metaiodobenzylguanidine scan and proposal for a scoring system. Cancer 77:805–811. https://doi.org/10.1002/(sici)1097-0142(19960215)77:4<805:aid-cncr29>3.0.co;2-3

    CAS  Article  PubMed  Google Scholar 

  82. 82.

    Perel Y, Conway J, Kletzel M et al (1999) Clinical impact and prognostic value of metaiodobenzylguanidine imaging in children with metastatic neuroblastoma. J Pediatr Hematol Oncol 21:13–18. https://doi.org/10.1097/00043426-199901000-00004

    CAS  Article  PubMed  Google Scholar 

  83. 83.

    Decarolis B, Schneider C, Hero B et al (2013) Iodine-123 metaiodobenzylguanidine scintigraphy scoring allows prediction of outcome in patients with stage 4 neuroblastoma: results of the Cologne interscore comparison study. J Clin Oncol 31:944–951. https://doi.org/10.1200/JCO.2012.45.8794

    CAS  Article  PubMed  Google Scholar 

  84. 84.

    Frappaz D, Bonneu A, Chauvot P et al (2000) Metaiodobenzylguanidine assessment of metastatic neuroblastoma: observer dependency and chemosensitivity evaluation. The SFOP Group. Med Pediatr Oncol 34:237–241. https://doi.org/10.1002/(sici)1096-911x(200004)34:4<237:aid-mpo1>3.0.co;2-j

    CAS  Article  PubMed  Google Scholar 

  85. 85.

    Yanik GA, Parisi MT, Shulkin BL et al (2013) Semiquantitative mIBG scoring as a prognostic indicator in patients with stage 4 neuroblastoma: a report from the Children's oncology group. J Nucl Med 54:541–548. https://doi.org/10.2967/jnumed.112.112334

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  86. 86.

    Yanik GA, Parisi MT, Naranjo A et al (2018) Validation of postinduction curie scores in high-risk neuroblastoma: a children's oncology group and SIOPEN group report on SIOPEN/HR-NBL1. J Nucl Med 59:502–508. https://doi.org/10.2967/jnumed.117.195883

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  87. 87.

    Katzenstein HM, Cohn SL, Shore RM et al (2004) Scintigraphic response by 123I-metaiodobenzylguanidine scan correlates with event-free survival in high-risk neuroblastoma. J Clin Oncol 22:3909–3915. https://doi.org/10.1200/JCO.2004.07.144

    Article  PubMed  Google Scholar 

  88. 88.

    Schmidt M, Simon T, Hero B et al (2008) The prognostic impact of functional imaging with (123)I-mIBG in patients with stage 4 neuroblastoma >1 year of age on a high-risk treatment protocol: results of the German Neuroblastoma Trial NB97. Eur J Cancer 44:1552–1558. https://doi.org/10.1016/j.ejca.2008.03.013

    Article  PubMed  Google Scholar 

  89. 89.

    Naranjo A, Parisi MT, Shulkin BL et al (2011) Comparison of (1)(2)(3)I-metaiodobenzylguanidine (MIBG) and (1)(3)(1)I-MIBG semi-quantitative scores in predicting survival in patients with stage 4 neuroblastoma: a report from the Children's Oncology Group. Pediatr Blood Cancer 56:1041–1045. https://doi.org/10.1002/pbc.22991

    Article  PubMed  PubMed Central  Google Scholar 

  90. 90.

    Brodeur GM, Pritchard J, Berthold F et al (1993) Revisions of the international criteria for neuroblastoma diagnosis, staging, and response to treatment. J Clin Oncol 11:1466–1477. https://doi.org/10.1200/JCO.1993.11.8.1466

    CAS  Article  PubMed  Google Scholar 

  91. 91.

    Cecchetto G, Mosseri V, De Bernardi B et al (2005) Surgical risk factors in primary surgery for localized neuroblastoma: the LNESG1 study of the European International Society of Pediatric Oncology Neuroblastoma Group. J Clin Oncol 23:8483–8489. https://doi.org/10.1200/JCO.2005.02.4661

    Article  PubMed  Google Scholar 

  92. 92.

    Brisse HJ, McCarville MB, Granata C et al (2011) Guidelines for imaging and staging of neuroblastic tumors: consensus report from the International Neuroblastoma Risk Group Project. Radiology 261:243–257. https://doi.org/10.1148/radiol.11101352

    Article  PubMed  Google Scholar 

  93. 93.

    Chen AM, Trout AT, Towbin AJ (2018) A review of neuroblastoma image-defined risk factors on magnetic resonance imaging. Pediatr Radiol 48:1337–1347. https://doi.org/10.1007/s00247-018-4117-9

    Article  PubMed  Google Scholar 

  94. 94.

    Monclair T, Mosseri V, Cecchetto G et al (2015) Influence of image-defined risk factors on the outcome of patients with localised neuroblastoma. A report from the LNESG1 study of the European International Society of Paediatric Oncology Neuroblastoma Group. Pediatr Blood Cancer 62:1536–1542. https://doi.org/10.1002/pbc.25460

    Article  PubMed  Google Scholar 

  95. 95.

    Pohl A, Erichsen M, Stehr M et al (2016) Image-defined risk factors correlate with surgical radicality and local recurrence in patients with neuroblastoma. Klin Padiatr 228:118–123. https://doi.org/10.1055/s-0041-111175

    CAS  Article  PubMed  Google Scholar 

  96. 96.

    Eisenhauer EA, Therasse P, Bogaerts J et al (2009) New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 45:228–247. https://doi.org/10.1016/j.ejca.2008.10.026

    CAS  Article  PubMed  Google Scholar 

  97. 97.

    Cohn SL, Pearson ADJ, London WB et al (2009) The International Neuroblastoma Risk Group (INRG) classification system: an INRG Task Force report. J Clin Oncol 27:289–297. https://doi.org/10.1200/JCO.2008.16.6785

    Article  PubMed  PubMed Central  Google Scholar 

  98. 98.

    Schwarz KB, Driver I, Lewis IJ, Taylor RE (1997) Positive MIBG scanning at the time of relapse in neuroblastoma which was MIBG negative at diagnosis. Br J Radiol 70:90–92. https://doi.org/10.1259/bjr.70.829.9059302

    CAS  Article  PubMed  Google Scholar 

  99. 99.

    Chambers G, Frood R, Patel C, Scarsbrook A (2019) (18)F-FDG PET-CT in paediatric oncology: established and emerging applications. Br J Radiol 92:20180584. https://doi.org/10.1259/bjr.20180584

    Article  PubMed  Google Scholar 

  100. 100.

    Schwartz LH, Litiere S, de Vries E et al (2016) RECIST 1.1-Update and clarification: from the RECIST committee. Eur J Cancer 62:132–137. https://doi.org/10.1016/j.ejca.2016.03.081

    Article  PubMed  PubMed Central  Google Scholar 

  101. 101.

    Bagatell R, McHugh K, Naranjo A et al (2016) Assessment of primary site response in children with high-risk neuroblastoma: an international multicenter study. J Clin Oncol 34:740–746. https://doi.org/10.1200/JCO.2015.63.2042

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Barry L. Shulkin.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest.

Human and animal rights

The internal review boards (IRB) determined that this pictorial review did not require human subjects informed consent.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khalatbari, H., Shulkin, B.L. & Parisi, M.T. Pictorial review of the clinical applications of MIBG in neuroblastoma: current practices. Clin Transl Imaging 8, 483–507 (2020). https://doi.org/10.1007/s40336-020-00392-y

Download citation

Keywords

  • Neuroblastoma
  • MIBG
  • Pediatrics
  • Oncology
  • Imaging