Towards quantitative small-animal imaging on hybrid PET/CT and PET/MRI systems



Over the past two decades, innovations in small-animal positron emission tomography (PET) have reached an impressive level, which has brought countless opportunities to explore the major puzzles in biomedical research. It is a given that pairing information coming from different imaging modalities renders unprecedented knowledge and provides a great insight into various facets of biological systems, such as anatomy, function, physiology, and metabolism in animal models of human diseases, which are difficult to be beaten by standalone PET scanners. The development of bimodal and tri-modal imaging platforms with advanced software solutions dedicated for quantitative studies in small-animals has spurred academic and industrial interest. However, it is undisputed that the potential success of these scanners in filling the translational gap between human and animal findings, hinges to a great extent upon optimization and standardization of relevant parameters and acquisition protocols, which is often overlooked.


This article reviews the trends till 2020 in the field of preclinical PET imaging with emphasize on image reconstruction and quantitative corrections implemented on state-of-the-heart hybrid systems. First, the challenges, limitations, and benefits offered by multi-modality imaging systems are described and then, the most commonly used strategies, as well as novel techniques for image reconstruction and image corrections (attenuation, scattering, normalization, motion, and partial volume effect) are presented. The advantages and disadvantages of different methods are also discussed. We also briefly touch upon the factors that should be considered for reliable kinetic modeling and absolute quantitation in preclinical small animal research.


Multi-modality imaging has attracted a lot of research, particularly in the preclinical portfolio. Nevertheless, more research is still needed to optimize the conceptual design, reach the limits of quantitative imaging and implement standardized protocols for small-animal studies. Without any doubt, exploring the potential advantages of combined imaging units providing optimal image quality and reliable tools for quantification of biological parameters through standardized imaging protocols is one of the goals of translational research.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Ma X, Cheng Z (2020) Positron emission tomography (PET) imaging in live animals. In: Tanaka K, Vong K (eds) Handbook of in vivo chemistry in mice: from lab to living system. Wiley, New York, pp 127–149

  2. 2.

    Cal-Gonzalez J, Rausch I, Sundar S, Lalith K, Lassen ML, Muzik O, Moser E, Papp L, Beyer T (2018) Hybrid imaging: instrumentation and data processing. Front Phys 6:47

    Google Scholar 

  3. 3.

    Belcari N, Camarlinghi N, Ferretti S, Iozzo P, Panetta D, Salvadori PA, Sportelli G, Del Guerra A (2017) NEMA NU-4 performance evaluation of the IRIS PET/CT preclinical scanner. IEEE Trans Radiat Plasma Med Sci 1(4):301–309

    Google Scholar 

  4. 4.

    Gu Z, Taschereau R, Vu NT, Prout DL, Silverman RW, Lee JT, Chatziioannou AF (2019) Performance Evaluation of G8, a High-Sensitivity Benchtop Preclinical PET/CT Tomograph. J Nucl Med 60(1):142–149

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    SOFIE (2020) GNEXT PET/CT.

  6. 6.

    Szanda I, Mackewn J, Patay G, Major P, Sunassee K, Mullen GE, Nemeth G, Haemisch Y, Blower PJ, Marsden PK (2011) National electrical manufacturers association NU-4 performance evaluation of the PET component of the NanoPET/CT preclinical PET/CT scanner. J Nucl Med 52(11):1741–1747

    PubMed  Google Scholar 

  7. 7.

    Bruker (2020) Trusted preclinical MR combines with revolutionary PET Performance.

  8. 8.

    Goorden MC, van der Have F, Kreuger R, Ramakers RM, Vastenhouw B, Burbach JPH, Booij J, Molthoff CF, Beekman FJ (2013) VECTor: a preclinical imaging system for simultaneous submillimeter SPECT and PET. J Nucl Med 54(2):306–312

    CAS  PubMed  Google Scholar 

  9. 9.

    MILabs (2020) Preclinical imaging systems.

  10. 10.

    Del Guerra A, Di Domenico G, Scandola M, Zavattini G (1998) High spatial resolution small animal YAP-PET. Nucl Instrum Methods Phys Res A 409(1–3):537–541

    Google Scholar 

  11. 11.

    Herrmann K, Dahlbom M, Nathanson D, Wei L, Radu C, Chatziioannou A, Czernin J (2013) Evaluation of the Genisys4, a bench-top preclinical PET scanner. J Nucl Med 54(7):1162–1167

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Nagy K, Tóth M, Major P, Patay G, Egri G, Häggkvist J, Varrone A, Farde L, Halldin C, Gulyás B (2013) Performance evaluation of the small-animal nanoScan PET/MRI system. J Nucl Med 54(10):1825–1832

    PubMed  Google Scholar 

  13. 13.

    MRSolutions (2020) Preclinical imaging systems.

  14. 14.

    Magota K, Kubo N, Kuge Y, Nishijima K-i, Zhao S, Tamaki N (2011) Performance characterization of the Inveon preclinical small-animal PET/SPECT/CT system for multimodality imaging. Eur J Nucl Med Mol Imaging 38(4):742–752

    PubMed  Google Scholar 

  15. 15.

    Sánchez F, Orero A, Soriano A, Correcher C, Conde P, González A, Hernández L, Moliner L, Rodríguez-Alvarez MJ, Vidal L (2013) ALBIRA: a small animal PET/SPECT/CT imaging system. Med Phys 40(5):051906

    PubMed  Google Scholar 

  16. 16.

    Mediso Medical Imaging Systems (2016) nanoScan SPECT/CT/PET.,11&pid=90

  17. 17.

    MOLECUBES (2020) B-CUBE.

  18. 18.

    Krishnamoorthy S, Blankemeyer E, Mollet P, Surti S, Van Holen R, Karp JS (2018) Performance evaluation of the MOLECUBES β-CUBE—a high spatial resolution and high sensitivity small animal PET scanner utilizing monolithic LYSO scintillation detectors. Phys Med Biol 63(15):155013

    PubMed  PubMed Central  Google Scholar 

  19. 19.

    Goertzen AL (2004) Development of a combined microPET and microCT system for mouse imaging. University of California Los Angeles, Los Angeles

    Google Scholar 

  20. 20.

    Nicol S, Karkar S, Hemmer C, Dawiec A, Benoit D, Breugnon P, Dinkespiler B, Riviere F, Logier J-P, Niclas M (2009) Design and construction of the ClearPET/XPAD small animal PET/CT scanner. In: 2009 IEEE Nuclear Science Symposium Conference Record (NSS/MIC). IEEE, pp 3311–3314

  21. 21.

    Lage E, Vaquero JJ, Sisniega A, España S, Tapias G, Udías Á, García V, Rodríguez-Ruano A, Desco M (2008) VrPET/CT: development of a rotating multimodality scanner for small-animal imaging. In: 2008 IEEE Nuclear Science Symposium Conference Record. IEEE, pp 4671–4674

  22. 22.

    Cañadas M, Embid M, Lage E, Desco M, Vaquero JJ, Pérez JM (2010) NEMA NU 4–2008 performance measurements of two commercial small-animal PET scanners: ClearPET and rPET-1. IEEE Trans Nucl Sci 58(1):58–65

    Google Scholar 

  23. 23.

    Judenhofer MS, Cherry SR (2013) Applications for preclinical PET/MRI. In: Seminars in nuclear medicine, vol 1. Elsevier, Amsterdam, pp 19–29

  24. 24.

    Cabello J, Ziegler SI (2018) Advances in PET/MR instrumentation and image reconstruction. Br J Radiol 91(1081):20160363

    PubMed  Google Scholar 

  25. 25.

    Mannheim JG, Schmid AM, Schwenck J, Katiyar P, Herfert K, Pichler BJ (2018) Disselhorst JA PET/MRI hybrid systems. In: Seminars in nuclear medicine, vol 4. Elsevier, Amsterdam, pp 332–347

  26. 26.

    Raylman RR, Majewski S, Lemieux SK, Velan SS, Kross B, Popov V, Smith MF, Weisenberger AG, Zorn C, Marano GD (2006) Simultaneous MRI and PET imaging of a rat brain. Phys Med Biol 51(24):6371

    PubMed  Google Scholar 

  27. 27.

    Vrigneaud J-M, Mcgrath J, Courteau A, Pegg R, Gomis AS-P, Camacho A, Martin G, Schramm N, Brunotte F (2018) Initial performance evaluation of a preclinical PET scanner available as a clip-on assembly in a sequential PET/MRI system. Phys Med Biol 63(12):125007

    CAS  PubMed  Google Scholar 

  28. 28.

    Lee BJ, Chang C-M, Levin CS (2018) PET system technology designs for achieving simultaneous PET/MRI. In: Iagaru A, Hope T, Veit-Haibach P (eds) PET/MRI in oncology. Springer, Cham, pp 1–26

    Google Scholar 

  29. 29.

    Gonzalez AJ, Berr SS, Cañizares G, Gonzalez-Montoro A, Orero A, Correcher C, Rezaei A, Nuyts J, Sanchez F, Majewski S (2018) Feasibility study of a small animal PET insert based on a single LYSO monolithic tube. Front Med 5:328

    Google Scholar 

  30. 30.

    Goertzen AL, Stortz G, Thiessen JD, Bishop D, Khan MS, Kozlowski P, Retière F, Schellenberg G, Shams E, Sossi V (2016) First results from a high-resolution small animal SiPM PET insert for PET/MR imaging at 7T. IEEE Trans Nucl Sci 63(5):2424–2433

    CAS  Google Scholar 

  31. 31.

    Schug D, Lerche C, Weissler B, Gebhardt P, Goldschmidt B, Wehner J, Dueppenbecker PM, Salomon A, Hallen P, Kiessling F (2016) Initial PET performance evaluation of a preclinical insert for PET/MRI with digital SiPM technology. Phys Med Biol 61(7):2851

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Stortz G, Thiessen JD, Bishop D, Khan MS, Kozlowski P, Retière F, Schellenberg G, Shams E, Zhang X, Thompson CJ (2018) Performance of a PET insert for high-resolution small-animal PET/MRI at 7 tesla. J Nucl Med 59(3):536–542

    CAS  PubMed  Google Scholar 

  33. 33.

    Wu Y, Catana C, Farrell R, Dokhale PA, Shah KS, Qi J, Cherry SR (2009) PET performance evaluation of an MR-compatible PET insert. IEEE Trans Nucl Sci 56(3):574–580

    PubMed  PubMed Central  Google Scholar 

  34. 34.

    Omidvari N, Cabello J, Topping G, Schneider FR, Paul S, Schwaiger M, Ziegler SI (2017) PET performance evaluation of MADPET4: a small animal PET insert for a 7 T MRI scanner. Phys Med Biol 62(22):8671

    CAS  PubMed  Google Scholar 

  35. 35.

    Hallen P, Schug D, Weissler B, Gebhardt P, Salomon A, Kiessling F, Schulz V (2018) PET performance evaluation of the small-animal Hyperion IID PET/MRI insert based on the NEMA NU-4 standard. Biomed Phys Eng Express 4(6):065027

    PubMed  PubMed Central  Google Scholar 

  36. 36.

    Berneking A, Gola A, Ferri A, Finster F, Rucatti D, Paternoster G, Shah NJ, Piemonte C, Lerche C (2018) A new PET detector concept for compact preclinical high-resolution hybrid MR-PET. Nucl Instrum Methods Phys Res A 888:44–52

    CAS  Google Scholar 

  37. 37.

    Maramraju SH, Smith SD, Junnarkar SS, Schulz D, Stoll S, Ravindranath B, Purschke ML, Rescia S, Southekal S, Pratte J-F (2011) Small animal simultaneous PET/MRI: initial experiences in a 9.4 T microMRI. Phys Med Biol 56(8):2459

  38. 38.

    CUBRESA (2020) NuPET™ System.

  39. 39.

    Ko GB, Yoon HS, Kim KY, Lee MS, Yang BY, Jeong JM, Lee DS, Song IC, Kim S-k, Kim D (2016) Simultaneous multiparametric PET/MRI with silicon photomultiplier PET and ultra-high-field MRI for small-animal imaging. J Nucl Med 57(8):1309–1315

    CAS  PubMed  Google Scholar 

  40. 40.

    BRIGHTONIX (2019) SimPET™ Simultaneous PET/MRI.

  41. 41.

    Inviscan (2018) HALO 3.0 And HALO 2.5 MRI PET Insert.

  42. 42.

    Alexandrakis G, Rannou FR, Chatziioannou AF (2005) Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study. Phys Med Biol 50(17):4225

    PubMed  PubMed Central  Google Scholar 

  43. 43.

    Prout D, Silverman R, Chatziioannou A (2004) Detector concept for OPET-A combined PET and optical imaging system. IEEE Trans Nucl Sci 51(3):752–756

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Li C, Yang Y, Mitchell GS, Cherry SR (2011) Simultaneous PET and multispectral 3-dimensional fluorescence optical tomography imaging system. J Nucl Med 52(8):1268–1275

    PubMed  PubMed Central  Google Scholar 

  45. 45.

    Douraghy A, Rannou FR, Silverman RW, Chatziioannou AF (2008) FPGA electronics for OPET: a dual-modality optical and positron emission tomograph. IEEE Trans Nucl Sci 55(5):2541–2545

    PubMed  PubMed Central  Google Scholar 

  46. 46.

    Vanhove C, Bankstahl JP, Krämer SD, Visser E, Belcari N, Vandenberghe S (2015) Accurate molecular imaging of small animals taking into account animal models, handling, anaesthesia, quality control and imaging system performance. EJNMMI Phys 2(1):1–25

    Google Scholar 

  47. 47.

    Reader AJ, Zaidi H (2007) Advances in PET image reconstruction. PET Clin 2(2):173–190

    PubMed  Google Scholar 

  48. 48.

    Bai B, Asma E (2017) PET image reconstruction: methodology and quantitative accuracy. In: Khalil M (ed) Basic Science of PET Imaging. Springer, Cham, pp 259–284

    Google Scholar 

  49. 49.

    Kinahan PE, Rogers J (1988) Analytic 3D image reconstruction using all detected events. Triumf

  50. 50.

    Shepp LA, Vardi Y (1982) Maximum likelihood reconstruction for emission tomography. IEEE Trans Med Imaging 1(2):113–122

    CAS  PubMed  Google Scholar 

  51. 51.

    Hudson HM, Larkin RS (1994) Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging 13(4):601–609

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Qi J, Leahy RM, Cherry SR, Chatziioannou A, Farquhar TH (1998) High-resolution 3D Bayesian image reconstruction using the microPET small-animal scanner. Phys Med Biol 43(4):1001

    CAS  PubMed  Google Scholar 

  53. 53.

    Daube-Witherspoon ME, Muehllehner G (1987) Treatment of axial data in three-dimensional PET. J Nucl Med 28(11):1717–1724

    CAS  PubMed  Google Scholar 

  54. 54.

    Defrise M, Kinahan PE, Townsend DW, Michel C, Sibomana M, Newport DF (1997) Exact and approximate rebinning algorithms for 3-D PET data. IEEE Trans Med Imaging 16(2):145–158

    CAS  PubMed  Google Scholar 

  55. 55.

    Lewitt RM, Muehllehner G, Karp JS (1994) Three-dimensional image reconstruction for PET by multi-slice rebinning and axial image filtering. Phys Med Biol 39(3):321

    Google Scholar 

  56. 56.

    Liu X, Defrise M, Michel C, Sibomana M, Comtat C, Kinahan P, Townsend D (1999) Exact rebinning methods for three-dimensional PET. IEEE Trans Med Imaging 18(8):657–664

    CAS  PubMed  Google Scholar 

  57. 57.

    Defrise M, Liu X (1999) A fast rebinning algorithm for 3D positron emission tomography using John's equation. Inverse Probl 15(4):1047

    Google Scholar 

  58. 58.

    Visser EP, Disselhorst JA, Brom M, Laverman P, Gotthardt M, Oyen WJ, Boerman OC (2009) Spatial resolution and sensitivity of the Inveon small-animal PET scanner. J Nucl Med 50(1):139–147

    PubMed  Google Scholar 

  59. 59.

    Disselhorst JA, Brom M, Laverman P, Slump CH, Boerman OC, Oyen WJ, Gotthardt M, Visser EP (2010) Image-quality assessment for several positron emitters using the NEMA NU 4–2008 standards in the Siemens Inveon small-animal PET scanner. J Nucl Med 51(4):610–617

    PubMed  Google Scholar 

  60. 60.

    Sato K, Shidahara M, Watabe H, Watanuki S, Ishikawa Y, Arakawa Y, Nai Y, Furumoto S, Tashiro M, Shoji T (2015) Performance evaluation of the small-animal PET scanner ClairvivoPET using NEMA NU 4–2008 standards. Phys Med Biol 61(2):696

    PubMed  Google Scholar 

  61. 61.

    Bowsher JE, Johnson VE, Turkington TG, Jaszczak RJ, Floyd C, Coleman RE (1996) Bayesian reconstruction and use of anatomical a priori information for emission tomography. IEEE Trans Med Imaging 15(5):673–686

    CAS  PubMed  Google Scholar 

  62. 62.

    Bowsher JE, Yuan H, Hedlund LW, Turkington TG, Akabani G, Badea A, Kurylo WC, Wheeler CT, Cofer GP, Dewhirst MW (2004) Utilizing MRI information to estimate F18-FDG distributions in rat flank tumors. In: IEEE Symposium Conference Record Nuclear Science. IEEE, pp 2488–2492

  63. 63.

    Reader AJ, Verhaeghe J (2014) 4D image reconstruction for emission tomography. Phys Med Biol 59(22):R371

    PubMed  Google Scholar 

  64. 64.

    Rahmim A, Tang J, Zaidi H (2009) Four-dimensional (4D) image reconstruction strategies in dynamic PET: Beyond conventional independent frame reconstruction. Med Phys 36(8):3654–3670

    PubMed  Google Scholar 

  65. 65.

    Ralli GP, Chappell MA, Mcgowan DR, Sharma RA, Higgins GS (2018) model with spatial and temporal roughness 4D-PET reconstruction using a spline-residue model with spatial and temporal roughness penalties

  66. 66.

    Gullberg GT, Veress AI, Shrestha UM, Liu J, Ordovas K, Segars WP, Seo Y (2019) Multiresolution spatiotemporal mechanical model of the heart as a prior to constrain the solution for 4D models of the heart. In: 15th International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine. International Society for Optics and Photonics

  67. 67.

    Ellis S, Reader AJ (2017) Simultaneous maximum a posteriori longitudinal PET image reconstruction. Phys Med Biol 62(17):6963

    PubMed  Google Scholar 

  68. 68.

    Huisman MC, Reder S, Weber AW, Ziegler SI, Schwaiger M (2007) Performance evaluation of the Philips MOSAIC small animal PET scanner. Eur J Nucl Med Mol Imaging 34(4):532–540

    PubMed  Google Scholar 

  69. 69.

    Tanaka E, Kudo H (2010) Optimal relaxation parameters of DRAMA (dynamic RAMLA) aiming at one-pass image reconstruction for 3D-PET. Phys Med Biol 55(10):2917

    PubMed  Google Scholar 

  70. 70.

    Vaissier P, Goorden M, Taylor A, Beekman F (2012) Count-regulated OSEM reconstruction. In: 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC). IEEE, pp 3315–3320

  71. 71.

    Vaissier PE, Goorden MC, Taylor AB, Beekman FJ (2013) Fast count-regulated OSEM reconstruction with adaptive resolution recovery. IEEE Trans Med Imaging 32(12):2250–2261

    PubMed  Google Scholar 

  72. 72.

    Goorden MC, van Roosmalen J, van der Have F, Beekman FJ (2016) Optimizing modelling in iterative image reconstruction for preclinical pinhole PET. Phys Med Biol 61(10):3712

    CAS  PubMed  Google Scholar 

  73. 73.

    Gaitanis A, Kastis GA, Vlastou E, Bouziotis P, Verginis P, Anagnostopoulos CD (2017) Investigation of image reconstruction parameters of the mediso nanoscan PC small-animal PET/CT scanner for two different positron emitters under NEMA NU 4–2008 standards. Mol Imaging Biol 19(4):550–559

    CAS  PubMed  Google Scholar 

  74. 74.

    Rahmim A, Qi J, Sossi V (2013) Resolution modeling in PET imaging: theory, practice, benefits, and pitfalls. Med Phys 40 (6Part1)

  75. 75.

    Iriarte A, Marabini R, Matej S, Sorzano COS, Lewitt RM (2016) System models for PET statistical iterative reconstruction: a review. Comput Med Imaging Graph 48:30–48

    CAS  PubMed  Google Scholar 

  76. 76.

    Wang Y, Seidel J, Tsui BM, Vaquero JJ, Pomper MG (2006) Performance evaluation of the GE healthcare eXplore VISTA dual-ring small-animal PET scanner. J Nucl Med 47(11):1891–1900

    PubMed  Google Scholar 

  77. 77.

    Magdics M, Tóth B, Szécsi L, Csébfalvi B, Szirmay-Kalos L, Szlavecz A, Hesz G, Benyó B, Cserkaszky A, Légrády D (2011) Detector modeling techniques for pre-clinical 3D PET reconstruction on the GPU. Paper presented at the Full 3-D Concerence

  78. 78.

    Mumcuoglu EU, Leahy RM, Cherry SR, Hoffman E (1996) Accurate geometric and physical response modelling for statistical image reconstruction in high resolution PET. In: 1996 IEEE Nuclear Science Symposium. Conference Record. IEEE, pp 1569–1573

  79. 79.

    Panin VY, Kehren F, Michel C, Casey M (2006) Fully 3-D PET reconstruction with system matrix derived from point source measurements. IEEE Trans Med Imaging 25(7):907–921

    PubMed  Google Scholar 

  80. 80.

    Lyu Y, Lv X, Liu W, Judenhofer MS, Zwingenberger A, Wisner ER, Berg E, McKenney SE, Leung EK, Spencer BA (2019) Mini EXPLORER II: a prototype high-sensitivity PET/CT scanner for companion animal whole body and human brain scanning. Phys Med Biol 64:075004

    Google Scholar 

  81. 81.

    Leroux J-D, Thibaudeau C, Lecomte R, Fontaine R (2007) Fast, accurate and versatile Monte Carlo method for computing system matrix. In: 2007 IEEE Nuclear Science Symposium Conference Record. IEEE, pp 3644–3648

  82. 82.

    Cabello J, Rafecas M (2012) Comparison of basis functions for 3D PET reconstruction using a Monte Carlo system matrix. Phys Med Biol 57(7):1759

    PubMed  Google Scholar 

  83. 83.

    Camarlinghi N, Sportelli G, Del Guerra A, Belcari N (2018) An automatic algorithm to exploit the symmetries of the system response matrix in positron emission tomography iterative reconstruction. Phys Med Biol 63(19):195005

    PubMed  Google Scholar 

  84. 84.

    Li K, Safavi-Naeini M, Franklin D, Han Z, Rosenfeld AB, Hutton B, Lerch ML (2015) A new virtual ring-based system matrix generator for iterative image reconstruction in high resolution small volume PET systems. Phys Med Biol 60(17):6949

    CAS  PubMed  Google Scholar 

  85. 85.

    Wang L, Zhu J, Liang X, Niu M, Wu X, Kao C-M, Kim H, Xie Q (2014) Performance evaluation of the Trans-PET® BioCaliburn® LH system: a large FOV small-animal PET system. Phys Med Biol 60(1):137

    PubMed  Google Scholar 

  86. 86.

    Moehrs S, Defrise M, Belcari N, Del Guerra A, Bartoli A, Fabbri S, Zanetti G (2008) Multi-ray-based system matrix generation for 3D PET reconstruction. Phys Med Biol 53(23):6925

    PubMed  Google Scholar 

  87. 87.

    Cal-Gonzalez J, Vaquero JJ, Herraiz JL, Pérez-Liva M, Soto-Montenegro ML, Peña-Zalbidea S, Desco M, Udías JM (2018) Improving PET quantification of small animal [68 Ga] DOTA-labeled PET/CT studies by using a CT-based positron range correction. Mol Imaging Biol 20(4):584–593

    CAS  PubMed  Google Scholar 

  88. 88.

    Alva-Sánchez H, Quintana-Bautista C, Martínez-Dávalos A, Ávila-Rodríguez M, Rodríguez-Villafuerte M (2016) Positron range in tissue-equivalent materials: experimental microPET studies. Phys Med Biol 61(17):6307

    PubMed  Google Scholar 

  89. 89.

    Rodríguez-Villafuerte M, Hernández E, Alva-Sánchez H, Martínez-Dávalos A, Ávila-Rodríguez M (2019) Positron range effects of 66Ga in small-animal PET imaging. Phys Med 67:50–57

    PubMed  Google Scholar 

  90. 90.

    Bertolli O, Eleftheriou A, Cecchetti M, Camarlinghi N, Belcari N, Tsoumpas C (2016) PET iterative reconstruction incorporating an efficient positron range correction method. Phys Med 32(2):323–330

    PubMed  Google Scholar 

  91. 91.

    Kotasidis FA, Angelis GI, Anton-Rodriguez J, Matthews JC, Reader AJ, Zaidi H (2014) Isotope specific resolution recovery image reconstruction in high resolution PET imaging. Med Phys 41(5):052503

    PubMed  Google Scholar 

  92. 92.

    Cal-González J, Herraiz J, España S, Desco M, Vaquero J, Udías JM (2009) Positron range effects in high resolution 3D PET imaging. In: 2009 IEEE Nuclear Science Symposium Conference Record (NSS/MIC). IEEE, pp 2788–2791

  93. 93.

    Bai B, Ruangma A, Laforest R, Tai Y-C, Leahy RM (2003) Positron range modeling for statistical PET image reconstruction. In: 2003 IEEE Nuclear Science Symposium. Conference Record (IEEE Cat. No. 03CH37515). IEEE, pp 2501–2505

  94. 94.

    Herraiz JL, Herranz E, Cal-González J, Vaquero JJ, Desco M, Cussó L, Udias JM (2016) Automatic cardiac self-gating of small-animal PET data. Mol Imaging Biol 18(1):109–116

    PubMed  Google Scholar 

  95. 95.

    Eleftheriou A, Tsoumpas C, Bertolli O, Stiliaris Ε (2014) Effect of the magnetic field on positron range using GATE for PET-MR. In: EJNMMI physics, vol S1. Springer, New York

  96. 96.

    Conti M, Eriksson L (2016) Physics of pure and non-pure positron emitters for PET: a review and a discussion. EJNMMI Phys 3(1):8

    PubMed  PubMed Central  Google Scholar 

  97. 97.

    Agoston DV (2017) How to translate time? The temporal aspect of human and rodent biology. Front Neurol 8:92

    PubMed  PubMed Central  Google Scholar 

  98. 98.

    Kotasidis FA, Matthews JC, Angelis GI, Markiewicz PJ, Lionheart WR, Reader AJ (2011) Impact of erroneous kinetic model formulation in Direct 4D image reconstruction. In: 2011 IEEE Nuclear Science Symposium Conference Record. IEEE, pp 2366–2367

  99. 99.

    Cheng X, Bayer C, Maftei C-A, Astner ST, Vaupel P, Ziegler SI, Shi K (2013) Preclinical evaluation of parametric image reconstruction of [18F] FMISO PET: correlation with ex vivo immunohistochemistry. Phys Med Biol 59(2):347

    PubMed  Google Scholar 

  100. 100.

    Cheng X, Li Z, Liu Z, Navab N, Huang S-C, Keller U, Ziegler SI, Shi K (2015) Direct parametric image reconstruction in reduced parameter space for rapid multi-tracer PET imaging. IEEE Trans Med Imaging 34(7):1498–1512

    Google Scholar 

  101. 101.

    Rahmim A, Tang J, Zaidi H (2013) Four-dimensional image reconstruction strategies in cardiac-gated and respiratory-gated PET imaging. PET Clin 8(1):51–67

    PubMed  Google Scholar 

  102. 102.

    Rahmim A, Rousset O, Zaidi H (2007) Strategies for motion tracking and correction in PET. PET Clin 2(2):251–266

    PubMed  Google Scholar 

  103. 103.

    Naseri M, Rajabi H, Wang J, Abbasi M, Kalantari F (2019) Simultaneous respiratory motion correction and image reconstruction in 4D-multi pinhole small animal SPECT. Med Phys 46(11):5047–5054

    PubMed  Google Scholar 

  104. 104.

    Otani T, Otsuka H, Kondo K, Takizawa H, Nagata M, Kishida M, Miyoshi H (2015) Utility of respiratory-gated small-animal PET/CT in the chronologic evaluation of an orthotopic lung cancer transplantation mouse model. Radiol Phys Technol 8(2):266–277

    PubMed  Google Scholar 

  105. 105.

    Yang Y, Rendig S, Siegel S, Newport DF, Cherry SR (2005) Cardiac PET imaging in mice with simultaneous cardiac and respiratory gating. Phys Med Biol 50(13):2979

    PubMed  Google Scholar 

  106. 106.

    Schäfers KP, Lang N, Stegger L, Schober O, Schäfers M (2006) Gated listmode acquisition with the quadHIDAC animal PET to image mouse hearts. Zeitschrift für Medizinische Phys 16(1):60–66

    Google Scholar 

  107. 107.

    Todica A, Lehner S, Wang H, Zacherl MJ, Nekolla K, Mille E, Xiong G, Bartenstein P, la Fougère C, Hacker M (2016) Derivation of a respiration trigger signal in small animal list-mode PET based on respiration-induced variations of the ECG signal. J Nucl Cardiol 23(1):73–83

    PubMed  Google Scholar 

  108. 108.

    Munoz C, Kolbitsch C, Reader AJ, Marsden P, Schaeffter T, Prieto C (2016) MR-based cardiac and respiratory motion-compensation techniques for PET-MR imaging. PET Clin 11(2):179–191

    PubMed  Google Scholar 

  109. 109.

    Fayad H, Lamare F, Merlin T, Visvikis D (2016) Motion correction using anatomical information in PET/CT and PET/MR hybrid imaging. Q J Nucl Med Mol Imaging 60(1):12

    PubMed  Google Scholar 

  110. 110.

    Chun SY, Reese TG, Ouyang J, Guerin B, Catana C, Zhu X, Alpert NM, El Fakhri G (2012) MRI-based nonrigid motion correction in simultaneous PET/MRI. J Nucl Med 53(8):1284–1291

    PubMed  PubMed Central  Google Scholar 

  111. 111.

    Zhong Y, Kalantari F, Zhang Y, Shao Y, Wang J (2018) Quantitative 4D-PET reconstruction for small animal using SMEIR-reconstructed 4D-CBCT. IEEE Trans Radiat Plasma Med Sci 2(4):300–306

    Google Scholar 

  112. 112.

    Ouyang J, Li Q, El Fakhri G (2013) Magnetic resonance-based motion correction for positron emission tomography imaging. In: Seminars in nuclear medicine, vol 1. Elsevier, Amsterdam, pp 60–67

  113. 113.

    Zhou VW, Kyme AZ, Meikle SR, Fulton R (2008) An event-driven motion correction method for neurological PET studies of awake laboratory animals. Mol Imaging Biol 10(6):315–324

    PubMed  Google Scholar 

  114. 114.

    Kyme AZ, Zhou V, Meikle SR, Fulton RR (2008) Real-time 3D motion tracking for small animal brain PET. Phys Med Biol 53(10):2651

    CAS  PubMed  Google Scholar 

  115. 115.

    Kyme AZ, Zhou VW, Meikle SR, Baldock C, Fulton RR (2011) Optimised motion tracking for positron emission tomography studies of brain function in awake rats. PLoS ONE 6(7):e21727

    CAS  PubMed  PubMed Central  Google Scholar 

  116. 116.

    Kyme A, Se S, Meikle S, Angelis G, Ryder W, Popovic K, Yatigammana D, Fulton R (2014) Markerless motion tracking of awake animals in positron emission tomography. IEEE Trans Med Imaging 33(11):2180–2190

    PubMed  Google Scholar 

  117. 117.

    Zhou V, Eisenhuth J, Kyme A, Akhtar M, Fulton R, Meikle S (2013) A motion adaptive animal chamber for PET imaging of freely moving animals. IEEE Trans Nucl Sci 60(5):3423–3431

    Google Scholar 

  118. 118.

    Miranda A, Staelens S, Stroobants S, Verhaeghe J (2017) Markerless rat head motion tracking using structured light for brain PET imaging of unrestrained awake small animals. Phys Med Biol 62(5):1744

    CAS  PubMed  Google Scholar 

  119. 119.

    Miranda A, Staelens S, Stroobants S, Verhaeghe J (2019) Estimation of and correction for finite motion sampling errors in small animal PET rigid motion correction. Med Biol Eng Comput 57(2):505–518

    CAS  PubMed  Google Scholar 

  120. 120.

    Angelis G, Gillam J, Kyme A, Fulton R, Meikle S (2018) Image-based modelling of residual blurring in motion corrected small animal PET imaging using motion dependent point spread functions. Biomed Phys Eng Express 4(3):035032

    Google Scholar 

  121. 121.

    Kyme AZ, Angelis GI, Eisenhuth J, Fulton RR, Zhou V, Hart G, Popovic K, Akhtar M, Ryder WJ, Clemens KJ (2019) Open-field PET: Simultaneous brain functional imaging and behavioural response measurements in freely moving small animals. Neuroimage 188:92–101

    PubMed  Google Scholar 

  122. 122.

    Salomon A, Goldschmidt B, Botnar R, Kiessling F, Schulz V (2012) A self-normalization reconstruction technique for PET scans using the positron emission data. IEEE Trans Med Imaging 31(12):2234–2240

    PubMed  Google Scholar 

  123. 123.

    Badawi RD, Marsden P (1999) Self-normalization of emission data in 3D PET. IEEE Trans Nucl Sci 46(3):709–712

    Google Scholar 

  124. 124.

    Zhang Y, Li H, Baghaei H, Liu S, Ramirez R, An S, Wang C, Wong W-H (2008) A new self-normalization method for PET. J Nucl Med 49(supplement 1):62P–62P

    Google Scholar 

  125. 125.

    de Santana MGC, de Albuquerque Souza GC, Gontijo RMG, Mendes BM, Ferreira AV (2019) Influence of detectors efficiency normalization on small animal PET image quality. Braz J Radiat Sci 7(3)

  126. 126.

    D'Ambrosio D, Zagni F, Spinelli AE, Marengo M (2013) Attenuation correction for small animal PET images: a comparison of two methods. Comput Math Methods Med 2013:103476

    PubMed  PubMed Central  Google Scholar 

  127. 127.

    Prasad R, Ay MR, Ratib O, Zaidi H (2010) CT-based attenuation correction on the FLEX Triumph preclinical PET/CT scanner. IEEE Trans Nucl Sci 58(1):66–75

    Google Scholar 

  128. 128.

    Chow PL, Bai B, Siegel S, Leahy R, Chatziioannou A (2002) Transmission imaging and attenuation correction for the microPET/spl reg/P4 tomograph. In: 2002 IEEE Nuclear Science Symposium Conference Record. IEEE, pp 1298–1302

  129. 129.

    Chow PL, Rannou FR, Chatziioannou AF (2005) Attenuation correction for small animal PET tomographs. Phys Med Biol 50(8):1837

  130. 130.

    El Ali HH, Bodholdt RP, Jørgensen JT, Myschetzky R, Kjaer A (2012) Importance of attenuation correction (AC) for small animal PET imaging. Diagnostics 2(4):42–51

    PubMed  PubMed Central  Google Scholar 

  131. 131.

    Konik A, Koesters T, Madsen M, Sunderland J (2011) Evaluation of attenuation and scatter correction requirements as a function of object size in small animal PET imaging. IEEE Trans Nucl Sci 58(5):2308–2314

    Google Scholar 

  132. 132.

    Mayorga Ruiz I (2015) Accuracy of the attenuation correction on small animal PET/CT

  133. 133.

    Hayakawa N, Yamane T, Arias-Loza A-P, Shinaji T, Wakabayashi H, Lapa C, Werner RA, Javadi MS, Pelzer T, Higuchi T (2017) Impact of tissue photon attenuation in small animal cardiac PET imaging. Int J Cardiol 227:257–260

    PubMed  Google Scholar 

  134. 134.

    Mizuta T, Kitamura K, Iwata H, Yamagishi Y, Ohtani A, Tanaka K, Inoue Y (2008) Performance evaluation of a high-sensitivity large-aperture small-animal PET scanner: ClairvivoPET. Ann Nucl Med 22(5):447–455

    PubMed  Google Scholar 

  135. 135.

    Pei C, Baotong F, Zhiming Z, Haohui T, Shuangquan L, Xiaoli S, Peilin W, Xiaoming W, Xudong Z, Long W (2019) NEMA NU-4 performance evaluation of a non-human primate animal PET. Phys Med Biol 64(10):105018

    CAS  PubMed  Google Scholar 

  136. 136.

    Bao Q, Newport D, Chen M, Stout DB, Chatziioannou AF (2009) Performance evaluation of the inveon dedicated PET preclinical tomograph based on the NEMA NU-4 standards. J Nucl Med 50(3):401–408

    PubMed  PubMed Central  Google Scholar 

  137. 137.

    Nai Y-H, Ose T, Shidahara M, Watabe H (2017) 137 Cs transmission imaging and segmented attenuation corrections in a small animal PET scanner. Radiol Phys Technol 10(3):321–330

    PubMed  Google Scholar 

  138. 138.

    Taschereau R, Bao Q, Rannou FR, Chatziioannou AF (2009) Video image based attenuation correction for PETbox, a preclinical PET tomograph. In: 2009 IEEE Nuclear Science Symposium Conference Record (NSS/MIC). IEEE, pp 3350–3352

  139. 139.

    Tsoumpas C, Visvikis D, Loudos G (2016) Innovations in small-animal PET/MR imaging instrumentation. PET Clin 11(2):105–118

    PubMed  Google Scholar 

  140. 140.

    Gong K, Berg E, Cherry SR, Qi J (2019) Machine learning in PET: from photon detection to quantitative image reconstruction. Proc IEEE 108(1):51–68

    Google Scholar 

  141. 141.

    Mehranian A, Arabi H, Zaidi H (2016) Vision 20/20: magnetic resonance imaging-guided attenuation correction in PET/MRI: challenges, solutions, and opportunities. Med Phys 43(3):1130–1155

    PubMed  Google Scholar 

  142. 142.

    Evans E, Buonincontri G, Hawkes RC, Ansorge RE, Carpenter TA, Sawiak SJ (2016) Direct evaluation of MR-derived attenuation correction maps for PET/MR of the Mouse Myocardium. IEEE Trans Nucl Sci 63(1):195–202

    CAS  Google Scholar 

  143. 143.

    Yu AR, Kim JS, Moon J, Kim HJ, Lim SM, Kim KM (2013) The effect of attenuation and scatter correction in rat brain PET. IEEE Trans Nucl Sci 60(2):751–757

    CAS  Google Scholar 

  144. 144.

    Konik AB (2010) Evaluation of attenuation and scatter correction requirements in small animal PET and SPECT imaging

  145. 145.

    Bentourkia Mh, Lecomte R (1999) Energy dependence of nonstationary scatter subtraction-restoration in high resolution PET. IEEE Trans Med Imaging 18(1):66–73

    CAS  PubMed  Google Scholar 

  146. 146.

    Bentourkia M, Msaki P, Cadorette J, Lecomte R (1995) Object and detector scatter-function dependence on energy and position in high resolution PET. IEEE Trans Nucl Sci 42(4):1162–1167

    Google Scholar 

  147. 147.

    Goertzen AL, Bao Q, Bergeron M, Blankemeyer E, Blinder S, Cañadas M, Chatziioannou AF, Dinelle K, Elhami E, Jans H-S (2012) NEMA NU 4–2008 comparison of preclinical PET imaging systems. J Nucl Med 53(8):1300–1309

    PubMed  PubMed Central  Google Scholar 

  148. 148.

    Zhang C, Sang Z, Wang X, Zhang X, Yang Y (2019) The effects of inter-crystal scattering events on the performance of PET detectors. Phys Med Biol 64(20):205004

    CAS  PubMed  Google Scholar 

  149. 149.

    Greenwood HE, Nyitrai Z, Mocsai G, Hobor S, Witney TH (2019) High throughput PET/CT imaging using a multiple mouse imaging system. J Nucl Med 61(2):292–297

    PubMed  PubMed Central  Google Scholar 

  150. 150.

    Prasad R, Zaidi H (2014) Scatter characterization and correction for simultaneous multiple small-animal PET imaging. Mol Imaging Biol 16(2):199–209

    PubMed  Google Scholar 

  151. 151.

    Adam L-E, Karp JS, Freifelder R (2000) Energy-based scatter correction for 3-D PET scanners using NaI (Tl) detectors. IEEE Trans Med Imaging 19(5):513–521

    CAS  PubMed  Google Scholar 

  152. 152.

    Grootoonk S, Spinks T, Sashin D, Spyrou N, Jones T (1996) Correction for scatter in 3D brain PET using a dual energy window method. Phys Med Biol 41(12):2757

    CAS  PubMed  Google Scholar 

  153. 153.

    Grootoonk S, Spinks T, Jones T, Michel C, Bol A (1991) Correction for scatter using a dual energy window technique with a tomograph operated without septa. In: Conference Record of the 1991 IEEE Nuclear Science Symposium and Medical Imaging Conference. IEEE, pp 1569–1573

  154. 154.

    Bendriem B, Trebossen R, Frouin V, Syrota A (1993) A PET scatter correction using simultaneous acquisitions with low and high lower energy thresholds. In: 1993 IEEE Conference Record Nuclear Science Symposium and Medical Imaging Conference. IEEE, pp 1779–1783

  155. 155.

    Bentourkia M, Msaki P, Cadorette J, Lecomte R (1996) Nonstationary scatter subtraction-restoration in high-resolution PET. J Nucl Med 37(12):2040

    CAS  PubMed  Google Scholar 

  156. 156.

    Zaidi H, Scheurer AH, Morel C (1999) An object-oriented Monte Carlo simulator for 3D cylindrical positron tomographs. Comput Methods Programs Biomed 58(2):133–145

    CAS  PubMed  Google Scholar 

  157. 157.

    Levin CS, Dahlbom M, Hoffman EJ (1995) A Monte Carlo correction for the effect of Compton scattering in 3-D PET brain imaging. IEEE Trans Nucl Sci 42(4):1181–1185

    Google Scholar 

  158. 158.

    Watson CC (2000) New, faster, image-based scatter correction for 3D PET. IEEE Trans Nucl Sci 47(4):1587–1594

    Google Scholar 

  159. 159.

    Werling A, Bublitz O, Doll J, Adam L-E, Brix G (2002) Fast implementation of the single scatter simulation algorithm and its use in iterative image reconstruction of PET data. Phys Med Biol 47(16):2947

    PubMed  Google Scholar 

  160. 160.

    Ollinger JM (1996) Model-based scatter correction for fully 3D PET. Phys Med Biol 41(1):153

    CAS  PubMed  Google Scholar 

  161. 161.

    Watson CC, Newport D, Casey ME (1996) A single scatter simulation technique for scatter correction in 3D PET. Three-dimensional image reconstruction in radiology and nuclear medicine, vol 4. Springer, Dordrecht, pp 255–268

    Google Scholar 

  162. 162.

    Zaidi H (2001) Scatter modelling and correction strategies in fully 3-D PET. Nucl Med Commun 22(11):1181–1184

    CAS  PubMed  Google Scholar 

  163. 163.

    Zaidi H (2000) Comparative evaluation of scatter correction techniques in 3D positron emission tomography. Eur J Nucl Med 27(12):1813–1826

    CAS  PubMed  Google Scholar 

  164. 164.

    Zaidi H (2004) Koral K (2004) Scatter modelling and compensation in emission tomography. Eur J Nucl Med Mol Imaging 31:761–782

    PubMed  Google Scholar 

  165. 165.

    Cysouw MC, Kramer GM, Schoonmade LJ, Boellaard R, De Vet HC, Hoekstra OS (2017) Impact of partial-volume correction in oncological PET studies: a systematic review and meta-analysis. Eur J Nucl Med Mol Imaging 44(12):2105–2116

    PubMed  PubMed Central  Google Scholar 

  166. 166.

    Cal-González J, Tsoumpas C, Lassen M, Rasul S, Koller L, Hacker M, Schäfers K, Beyer T (2017) Impact of motion compensation and partial volume correction for 18F-NaF PET/CT imaging of coronary plaque. Phys Med Biol 63(1):015005

    PubMed  Google Scholar 

  167. 167.

    Turco A, Nuyts J, Duchenne J, Gheysens O, Voigt J-U, Claus P, Vunckx K (2017) Analysis of partial volume correction on quantification and regional heterogeneity in cardiac PET. J Nucl Cardiol:1–9.

  168. 168.

    Bettinardi V, Castiglioni I, De Bernardi E, Gilardi M (2014) PET quantification: strategies for partial volume correction. Clin Transl Imaging 2(3):199–218

    Google Scholar 

  169. 169.

    Lehnert W, Gregoire M-C, Reilhac A, Meikle SR (2012) Characterisation of partial volume effect and region-based correction in small animal positron emission tomography (PET) of the rat brain. Neuroimage 60(4):2144–2157

    PubMed  Google Scholar 

  170. 170.

    Hoetjes NJ, van Velden FH, Hoekstra OS, Hoekstra CJ, Krak NC, Lammertsma AA, Boellaard R (2010) Partial volume correction strategies for quantitative FDG PET in oncology. Eur J Nucl Med Mol Imaging 37(9):1679–1687

    PubMed  PubMed Central  Google Scholar 

  171. 171.

    Cal-González J, Moore S, Park M, Herraiz J, Vaquero J, Desco M, Udias J (2015) Improved quantification for local regions of interest in preclinical PET imaging. Phys Med Biol 60(18):7127

    PubMed  PubMed Central  Google Scholar 

  172. 172.

    Boussion N, Hatt M, Lamare F, Bizais Y, Turzo A, Cheze-Le Rest C, Visvikis D (2006) A multiresolution image based approach for correction of partial volume effects in emission tomography. Phys Med Biol 51(7):1857

  173. 173.

    Prando S, Carneiro CdG, Robilotta CC, Sapienza MT (2019) Comparison of different quantification methods for 18F-fluorodeoxyglucose-positron emission tomography studies in rat brains. Clinics 74:e1273

    PubMed  PubMed Central  Google Scholar 

  174. 174.

    Morris ED, Endres CJ, Schmidt KC, Christian BT, Muzic RF, Fisher RE (2004) Kinetic modeling in positron emission tomography. Emission tomography: The Fundamentals of PET and SPECT. Academic Press, San Diego

    Google Scholar 

  175. 175.

    Kuntner C (2014) Kinetic modeling in pre-clinical positron emission tomography. Zeitschrift für Med Phys 24(4):274–285

    Google Scholar 

  176. 176.

    Laforest R, Sharp TL, Engelbach JA, Fettig NM, Herrero P, Kim J, Lewis JS, Rowland DJ, Tai Y-C, Welch MJ (2005) Measurement of input functions in rodents: challenges and solutions. Nucl Med Biol 32(7):679–685

    CAS  PubMed  Google Scholar 

  177. 177.

    Riches A, Sharp JG, Thomas DB, Smith SV (1973) Blood volume determination in the mouse. J Physiol 228(2):279–284

    CAS  PubMed  PubMed Central  Google Scholar 

  178. 178.

    Liu Z, Lan X (2019) Microfluidic radiobioassays: a radiometric detection tool for understanding cellular physiology and pharmacokinetics. Lab Chip 19(14):2315–2339

    CAS  PubMed  Google Scholar 

  179. 179.

    Maneuski D, Giacomelli F, Lemaire C, Pimlott S, Plenevaux A, Owens J, O'Shea V, Luxen A (2017) On the use of positron counting for radio-assay in nuclear pharmaceutical production. Appl Radiat Isot 125:9–14

    CAS  PubMed  Google Scholar 

  180. 180.

    Alf MF, Wyss MT, Buck A, Weber B, Schibli R, Krämer SD (2013) Quantification of brain glucose metabolism by 18F-FDG PET with real-time arterial and image-derived input function in mice. J Nucl Med 54(1):132–138

    CAS  PubMed  Google Scholar 

  181. 181.

    Watabe W, Channing MA, Riddell C, Jousse F, Libutti SK, Carrasquillo JA, Bacharach SL, Carson RE (2001) Noninvasive estimation of the aorta input function for measurement of tumor blood flow with [/sup 15/O] water. IEEE Trans Med Imaging 20(3):164–174

    CAS  PubMed  Google Scholar 

  182. 182.

    Evans E, Buonincontri G, Izquierdo D, Methner C, Hawkes RC, Ansorge RE, Krieg T, Carpenter TA, Sawiak SJ (2015) Combining MRI with PET for partial volume correction improves image-derived input functions in mice. IEEE Trans Nucl Sci 62(3):628–633

    PubMed  PubMed Central  Google Scholar 

  183. 183.

    Bertoglio D, Verhaeghe J, Korat Š, Miranda A, Stroobants S, Mrzljak L, Dominguez C, Liu L, Skinbjerg M, Munoz-Sanjuan I (2019) In vitro and in vivo assessment of suitable reference region and kinetic modelling for the mGluR1 Radioligand [11 C] ITDM in Mice. Mol Imaging Biol:1–10

  184. 184.

    Meyer M, Le-Bras L, Fernandez P, Zanotti-Fregonara P (2017) Standardized input function for 18F-FDG PET studies in mice: a cautionary study. PLoS ONE 12(1):e0168667

    PubMed  PubMed Central  Google Scholar 

  185. 185.

    Wong K-P, Zhang X, Huang S-C (2013) Improved derivation of input function in dynamic mouse [18 F] FDG PET using bladder radioactivity kinetics. Mol Imaging Biol 15(4):486–496

    PubMed  Google Scholar 

  186. 186.

    Ye Q, Lyu Z, Yao S, Dong Y, Liu H, Wu J, Liu Y, Ma T (2018) Direct 4D Patlak Reconstruction in Dynamic FDG PET Imaging with Population-based Input Function. In: 2018 IEEE Nuclear Science Symposium and Medical Imaging Conference Proceedings (NSS/MIC). IEEE, pp 1–4

  187. 187.

    Kuttner S, Wickstrøm KK, Kalda G, Dorraji SE, Martin-Armas M, Oteiza A, Jenssen R, Fenton K, Sundset R, Axelsson J (2020) Machine learning derived input-function in a dynamic 18F-FDG PET study of mice. Biomed Phys Eng Express 6(1):015020

    Google Scholar 

  188. 188.

    Bascuñana P, Thackeray JT, Bankstahl M, Bengel FM, Bankstahl JP (2019) Anesthesia and preconditioning induced changes in mouse brain [18 F] FDG uptake and kinetics. Mol Imaging Biol 21(6):1089–1096

    PubMed  Google Scholar 

  189. 189.

    Goetz C, Podein M, Braun F, Weber WA, Choquet P, Constantinesco A, Mix M (2017) Influence of animal heating on PET imaging quantification and kinetics: biodistribution of 18F-tetrafluoroborate and 18F-FDG in Mice. J Nucl Med 58(7):1162–1166

    CAS  PubMed  Google Scholar 

  190. 190.

    Wong K-P, Sha W, Zhang X, Huang S-C (2011) Effects of administration route, dietary condition, and blood glucose level on kinetics and uptake of 18F-FDG in mice. J Nucl Med 52(5):800–807

    PubMed  PubMed Central  Google Scholar 

  191. 191.

    Gutierrez DF, Zaidi H (2012) Automated analysis of small animal PET studies through deformable registration to an atlas. Eur J Nucl Med Mol Imaging 39(11):1807–1820

    PubMed  PubMed Central  Google Scholar 

  192. 192.

    Amirrashedi M, Sarkar S, Ghafarian P, Hashemi Shahraki R, Geramifar P, Zaidi H, Ay MR (2019) NEMA NU-4 2008 performance evaluation of Xtrim-PET: A prototype SiPM-based preclinical scanner. Med Phys 46(11):4816–4825

    PubMed  Google Scholar 

Download references


This work was supported through grant No. 36950 from Tehran University of Medical Sciences and the Swiss National Science Foundation under grant SNSF 320030_176052.

Author information




MA, HZ and MRA: literature search, literature review, manuscript writing, manuscript editing, content planning.

Corresponding authors

Correspondence to Habib Zaidi or Mohammad Reza Ay.

Ethics declarations

Conflict of interest

Mahsa Amirrashedi, Habib Zaidi and Mohammad Reza Ay declare no conflict of interest related to this work.

Ethic standards

Ethical approval for producing Fig. 4 was obtained from the Ethics committee of Tehran University of Medical Sciences (Approval ID: IR.TUMS.MEDICINE.REC.1397.004).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Amirrashedi, M., Zaidi, H. & Ay, M.R. Towards quantitative small-animal imaging on hybrid PET/CT and PET/MRI systems. Clin Transl Imaging 8, 243–263 (2020).

Download citation


  • Preclinical imaging
  • Image reconstruction
  • Kinetic modeling
  • Multi-modality
  • Quantification