Advertisement

Clinical and Translational Imaging

, Volume 6, Issue 4, pp 257–269 | Cite as

A glance at imaging bladder cancer

  • Ebru Salmanoglu
  • Ethan Halpern
  • Eduoard J. Trabulsi
  • Sung Kim
  • Mathew L. Thakur
Systematic Review
Part of the following topical collections:
  1. Genitourinary

Abstract

Purpose

Early and accurate diagnosis of bladder cancer (BCa) will contribute extensively to the management of the disease. The purpose of this review was to briefly describe the conventional imaging methods and other novel imaging modalities used for early detection of BCa and outline their pros and cons.

Methods

Literature search was performed on Pubmed, PMC, and Google scholar for the period of January 2014 to February 2018 and using such words as “bladder cancer, bladder tumor, bladder cancer detection, diagnosis and imaging”.

Results

A total of 81 published papers were retrieved and are included in the review. For patients with hematuria and suspected of BCa, cystoscopy, and CT are most commonly recommended. Ultrasonography, MRI, PET/CT using 18F-FDG, or 11C-choline and recently PET/MRI using 18F-FDG also play a prominent role in detection of BCa.

Conclusion

For initial diagnosis of BCa, cystoscopy is generally performed. However, cystoscopy cannot accurately detect carcinoma in situ and cannot distinguish benign masses from malignant lesions. CT is used in two modes, CT and computed tomographic urography, both for diagnosis and for staging of BCa. However, they cannot differentiate T1 and T2 BCa. MRI is performed to diagnose invasive BCa and can differentiate muscle invasive bladder carcinoma from non-muscle invasive bladder carcinoma. However, CT and MRI have low sensitivity for nodal staging. For nodal staging, PET/CT is preferred. PET/MRI provides a better differentiation of normal and pathologic structures as compared with PET/CT. Nonetheless none of the approaches can address all issues related for the management of BCa. Novel imaging methods that target specific biomarkers, image BCa early and accurately, and stage the disease are warranted.

Keywords

Bladder cancer Imaging Cancer diagnosis CT MRI PET/CT 

Abbreviations

ADC

Apparent diffusion coefficient

AUA

American urological association

BCa

Bladder cancer

11C

11Carbon

CEUS

Contrast-enhanced ultrasonography

CECT

Contrast-enhanced computed tomography

CIS

Carcinoma in situ

CLE

Confocal laser endomicroscopy

CMP

Corticomedullary phase

CSD

Cumulative incidence of cancer-specific death

CT

Computed tomography

CTU

Computed tomographic urography

2D US

Two-dimensional ultrasonography

DCE-MRI

Dynamic contrast-enhanced magnetic resonance imaging

DW-MRI

Diffusion-weighted magnetic resonance imaging

FC

Flexible cystoscopy

18F-FDG

18Fluorine-2-deoxy-2-fluorodeoxyglucose

FP

False positive

HTS

Histological T staging

LN

Lymph node

LNMRI

Lymphotropic nanoparticle enhanced MRI

mpMRI

Multiparametric MRI

MRI

Magnetic resonance imaging

MRU

Magnetic resonance urography

nADC

Normalized ADC

NaF

Sodium fluoride

NBI

Narrow band imaging

NCNN

National comprehensive cancer network

NMIBC

Non-muscle invasive bladder cancer

MIBC

Muscle invasive bladder cancer

NPV

Negative predictive value

OCT

Optical coherence tomography

OS

Overall survival

RC

Radical cystectomy

PDD

Photodynamic diagnosis

PET/CT

Positron emission tomography/computed tomography

PET/MRI

Positron emission tomography/magnetic resonance imaging

PPV

Positive predictive value

SPIES

Storz professional image enhancement system

SUVmax

Maximum standardized uptake value

1.5 T

1.5 Tesla

3 T

3 Tesla

TURB

Transurethral resection of bladder

T1W-MRI

T1-weighted magnetic resonance imaging

T2W-MRI

T2-weighted magnetic resonance imaging

UTS

Ultrasound T staging

US

Ultrasonography

WLC

White light cystoscopy

Notes

Acknowledgements

Dr. Thakur (PI), thanks NIH/NCI RO1CA157372, Deans Translational Science Award and the Sidney Kimmel Cancer Center Research award for their support in part. Dr. Ebru Salmanoglu is the visiting scholar to the Thakur laboratories and thanks The Scientific and Technological Research Council of Turkey (TÜBİTAK) for their fellowship.

Compliance with ethical standards

Conflict of interest

The authors Ebru Salmanoglu, Ethan Halpern, Edouard J. Trabulsi, Sung Kim, and Mathew L. Thakur have no of conflicts of interest.

References

  1. 1.
    Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F (2015) Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136:E359–E386.  https://doi.org/10.1002/ijc.29210 CrossRefPubMedGoogle Scholar
  2. 2.
    Antoni S, Ferlay J, Soerjomataram I, Znaor A, Jemal A, Bray F (2017) Bladder cancer incidence and mortality: a global overview and recent trends. Eur Urol 71:96–108.  https://doi.org/10.1016/j.eururo.2016.06.010 CrossRefPubMedGoogle Scholar
  3. 3.
    National Cancer Institute. Surveillance, epidemiology, and end results program. https://seer.cancer.gov/statfacts/html/urinb.html. Accessed 1 Nov 2017
  4. 4.
    Svatek RS, Hollenbeck BK, Holmäng S, Lee R, Kim SP, Stenzl A, Lotan Y (2014) The economics of bladder cancer: costs and considerations of caring for this disease. Eur Urol 66:253–262.  https://doi.org/10.1016/j.eururo.2014.01.006 CrossRefPubMedGoogle Scholar
  5. 5.
    Spiess PE, Agarwal N, Bangs R, Boorjian SA, Buyyounouski MK, Clark PE, Downs TM, Efstathiou JA, Flaig TW, Friedlander T, Greenberg RE, Guru KA, Hahn N, Herr HW, Hoimes C, Inman BA, Jimbo M, Kader AK, Lele SM, Meeks JJ, Michalski J, Montgomery JS, Pagliaro LC, Pal SK, Patterson A, Plimack ER, Pohar KS, Porter MP, Preston MA, Sexton WJ, Siefker-Radtke AO, Sonpavde G, Tward J, Wile G, Dwyer MA, Gurski LA (2017) Bladder Cancer, version 5.2017, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw 15:1240–1267.  https://doi.org/10.6004/jnccn.2017.0156 CrossRefPubMedGoogle Scholar
  6. 6.
    National Collaborating Center for Cancer. Bladder cancer: diagnosis and management. https://www.ncbi.nlm.nih.gov/books/NBK305022/pdf/Bookshelf_NBK305022.pdf. Accessed 1 Nov 2017
  7. 7.
    Sherif A, Garske U, de La Torre M, Thörn M (2006) Hybrid SPECT-CT: an additional technique for sentinel node detection of patients with invasive bladder cancer. Eur Urol 50:83–91.  https://doi.org/10.1016/j.eururo.2006.03.002 CrossRefPubMedGoogle Scholar
  8. 8.
    Krajewski W, Zdrojowy R, Wojciechowska J, Kościelska K, Dembowski J, Matuszewski M, Tupikowski K, Małkiewicz B, Kołodziej A (2016) Patient comfort during flexible and rigid cystourethroscopy. Videosurg Miniinv 11:94–97.  https://doi.org/10.5114/wiitm.2016.60665 CrossRefGoogle Scholar
  9. 9.
    Soubra A, Risk MC (2015) Diagnostics techniques in nonmuscle invasive bladder cancer. Indian J Urol 31:283–288.  https://doi.org/10.4103/0970-1591.166449 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Degeorge KC, Holt HR, Hodges SC (2017) Bladder cancer: diagnosis and treatment. Am Fam Physician 96:507–514PubMedGoogle Scholar
  11. 11.
    Gosnell ME, Polikarpov DM, Goldys EM, Zvyagin AV, Gillatt DA (2018) Computer-assisted cystoscopy diagnosis of bladder cancer. Urol Oncol 36:8.e9–8.e15.  https://doi.org/10.1016/j.urolonc.2017.08.026 CrossRefGoogle Scholar
  12. 12.
    American Urological Association. Diagnosis, evaluation and follow-up of asymptomatic microhematuria (AMH) in adults. https://auanet.org/guidelines/asymptomatic-microhematuria-(2012-reviewed-and-validity-confirmed-2016). Accessed 26 Apr 2018
  13. 13.
    Mari A, Abufaraj M, Gust KM, Shariat SF (2017) Novel endoscopic visualization techniques for bladder cancer detection: a review of the contemporary literature. Curr Opin Urol.  https://doi.org/10.1097/MOU.0000000000000459 Google Scholar
  14. 14.
    Lee JY, Cho KS, Kang DH, Do Jung H, Kwon JK, Oh CK, Ham WS, Choi YD (2015) A network meta-analysis of therapeutic outcomes after new image technology-assisted transurethral resection for non-muscle invasive bladder cancer: 5-aminolaevulinic acid fluorescence vs hexylaminolevulinate fluorescence vs narrow band imaging. BMC Cancer 15:566.  https://doi.org/10.1186/s12885-015-1571-8 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Hirner L, Stagge E, Rübben H, Schenck M, Eisenhardt A (2016) Narrow band imaging-assisted cystoscopy in bladder tumor follow-up: can more tumors be identified? Urol A 55:370–375.  https://doi.org/10.1007/s00120-015-3942-9 CrossRefGoogle Scholar
  16. 16.
    Chen SP, Liao JC (2014) Confocal laser endomicroscopy of bladder and upper tract urothelial carcinoma: a new era of optical diagnosis? Curr Urol Rep 15:437.  https://doi.org/10.1007/s11934-014-0437-y CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Lee CH, Tan CH, Faria SC, Kundra V (2017) Role of imaging in the local staging of urothelial carcinoma of the bladder. Am J Roentgenol 208:1193–1205.  https://doi.org/10.2214/AJR.16.17114 CrossRefGoogle Scholar
  18. 18.
    Gupta VG, Kumar S, Singh SK, Lal A, Kakkar N (2016) Contrast enhanced ultrasound in urothelial carcinoma of urinary bladder: an underutilized staging and grading modality. Cent Eur J Urol 69:360–365.  https://doi.org/10.5173/ceju.2016.893 Google Scholar
  19. 19.
    McKibben MJ, Woods ME (2015) Preoperative imaging for staging bladder cancer. Curr Urol Rep 16:22.  https://doi.org/10.1007/s11934-015-0496-8 CrossRefPubMedGoogle Scholar
  20. 20.
    Niwa N, Matsumoto K, Hayakawa N, Ito Y, Maeda T, Akatsuka S, Masuda T, Nakamura S, Tanaka N (2015) Comparison of outcomes between ultrasonography and cystoscopy in the surveillance of patients with initially diagnosed TaG1-2 bladder cancers: a matched-pair analysis. Urol Oncol 33:386.e15–386.e21.  https://doi.org/10.1016/j.urolonc.2015.04.018 CrossRefGoogle Scholar
  21. 21.
    Srivastava A, Douglass LM, Chernyak V, Watts KL (2017) Advances in imaging in prostate and bladder cancer. Curr Urol Rep 18:69.  https://doi.org/10.1007/s11934-017-0718-3 CrossRefPubMedGoogle Scholar
  22. 22.
    Tadin T, Sotosek S, Rahelić D, Fuckar Z (2014) Diagnostic accuracy of ultrasound T-staging of the urinary bladder cancer in comparison with histology in elderly patients. Coll Antropol 38:1123–1126PubMedGoogle Scholar
  23. 23.
    Li Q, Tang J, He E, Li Y, Zhou Y, Wang B (2017) Differentiation between high- and low-grade urothelial carcinomas using contrast enhanced ultrasound. Oncotarget 8:70883–70889.  https://doi.org/10.18632/oncotarget.20151 PubMedPubMedCentralGoogle Scholar
  24. 24.
    Guo S, Xu P, Zhou A, Wang G, Chen W, Mei J, Xiao F, Liu J, Zhang C (2017) Contrast-enhanced ultrasound differentiation between low- and high-grade bladder urothelial carcinoma and correlation with tumor microvessel density. J Ultrasound Med 36:2287–2297.  https://doi.org/10.1002/jum.14262 CrossRefPubMedGoogle Scholar
  25. 25.
    Schmid SC, Zahel T, Haller B, Horn T, Metzger I, Holzapfel K, Seitz AK, Gschwend JE, Retz M, Maurer T (2016) Prognostic value of computed tomography before radical cystectomy in patients with invasive bladder cancer: imaging predicts survival. World J Urol 34:569–576.  https://doi.org/10.1007/s00345-015-1654-9 CrossRefPubMedGoogle Scholar
  26. 26.
    Raman SP, Fishman EK (2014) Bladder malignancies on CT: the underrated role of CT in diagnosis. Am J Roentgenol 203:347–354.  https://doi.org/10.2214/AJR.13.12021 CrossRefGoogle Scholar
  27. 27.
    Trinh TW, Glazer DI, Sadow CA, Sahni VA, Geller NL, Silverman SG (2017) Bladder cancer diagnosis with CT urography: test characteristics and reasons for false-positive and false-negative results. Abdom Radiol 43:663–671.  https://doi.org/10.1007/s00261-017-1249-6 CrossRefGoogle Scholar
  28. 28.
    Helenius M, Dahlman P, Magnusson M, Lönnemark M, Magnusson A (2014) Contrast enhancement in bladder tumors examined with CT urography using traditional scan phases. Acta Radiol 55:1129–1136.  https://doi.org/10.1177/0284185113513762 CrossRefPubMedGoogle Scholar
  29. 29.
    Helenius M, Dahlman P, Lonnemark M, Brekkan E, Wernroth L, Magnusson A (2016) Comparison of post contrast CT urography phases in bladder cancer detection. Eur Radiol 26:585–591.  https://doi.org/10.1007/s00330-015-3844-7 CrossRefPubMedGoogle Scholar
  30. 30.
    Helenius M, Brekkan E, Dahlman P, Lönnemark M, Magnusson A (2015) Bladder cancer detection in patients with gross haematuria: computed tomography urography with enhancement-triggered scan versus flexible cystoscopy. Scand J Urol 49:377–381.  https://doi.org/10.3109/21681805.2015.1026937 CrossRefPubMedGoogle Scholar
  31. 31.
    Capalbo E, Kluzer A, Peli M, Cosentino M, Berti E, Cariati M (2015) Bladder cancer diagnosis: the role of CT urography. Tumori 101:412–417.  https://doi.org/10.5301/tj.5000331 CrossRefPubMedGoogle Scholar
  32. 32.
    Horn T, Zahel T, Adt N, Schmid SC, Heck MM, Thalgott MK, Hatzichristodoulou G, Haller B, Autenrieth M, Kübler HR, Gschwend JE, Holzapfel K, Maurer T (2016) Evaluation of computed tomography for lymph node staging in bladder cancer prior to radical cystectomy. Urol Int 96:51–56.  https://doi.org/10.1159/000440889 CrossRefPubMedGoogle Scholar
  33. 33.
    Nguyen HT, Pohar KS, Jia G, Shah ZK, Mortazavi A, Zynger DL, Wei L, Clark D, Yang X, Knopp MV (2014) Improving bladder cancer imaging using 3-T functional dynamic contrast-enhanced magnetic resonance imaging. Invest Radiol 49:390–395.  https://doi.org/10.1097/RLI.0000000000000022 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Malayeri AA, Pattanayak P, Apolo AB (2015) Imaging muscle-invasive and metastatic urothelial carcinoma. Curr Opin Urol 25:441–448.  https://doi.org/10.1097/MOU.0000000000000208 CrossRefPubMedGoogle Scholar
  35. 35.
    Soubra A, Hayward D, Dahm P, Goldfarb R, Froehlich J, Jha G, Konety BR (2016) The diagnostic accuracy of 18F-fluorodeoxyglucose positron emission tomography and computed tomography in staging bladder cancer: a single-institution study and a systematic review with meta-analysis. World J Urol 34:1229–1237.  https://doi.org/10.1007/s00345-016-1772-z CrossRefPubMedGoogle Scholar
  36. 36.
    Chen A, Liu A, Liu J, Tian S, Wang H, Liu Y (2016) Application of dual-energy spectral CT imaging in differential diagnosis of bladder cancer and benign prostate hyperplasia. Medicine (Baltimore) 95:e5705.  https://doi.org/10.1097/MD.0000000000005705 CrossRefGoogle Scholar
  37. 37.
    Hoosein MM, Rajesh A (2014) MR imaging of the urinary bladder. Magn Reson Imaging Clin N Am 22:129–134.  https://doi.org/10.1016/j.mric.2014.01.001 CrossRefPubMedGoogle Scholar
  38. 38.
    Gandrup KL, Løgager VB, Bretlau T, Nordling J, Thomsen HS (2015) Diagnosis of bladder tumours in patients with macroscopic haematuria: a prospective comparison of split-bolus computed tomography urography, magnetic resonance urography and flexible cystoscopy. Scand J Urol 49:224–229.  https://doi.org/10.3109/21681805.2014.981203 CrossRefPubMedGoogle Scholar
  39. 39.
    Woo S, Suh CH, Kim SY, Cho JY, Kim SH (2017) Diagnostic performance of MRI for prediction of muscle-invasiveness of bladder cancer: a systematic review and meta-analysis. Eur J Radiol 95:46–55.  https://doi.org/10.1016/j.ejrad.2017.07.021 CrossRefPubMedGoogle Scholar
  40. 40.
    Yoshida S, Koga F, Masuda H, Fujii Y, Kihara K (2014) Role of diffusion-weighted magnetic resonance imaging as an imaging biomarker of urothelial carcinoma. Int J Urol 21:1190–1200.  https://doi.org/10.1111/iju.12587 CrossRefPubMedGoogle Scholar
  41. 41.
    Wollin DA, Deng FM, Huang WC, Babb JS, Rosenkrantz AB (2014) Conventional and diffusion-weighted MRI features in diagnosis of metastatic lymphadenopathy in bladder cancer. Can J Urol 21:7454–7459PubMedGoogle Scholar
  42. 42.
    Kobayashi S, Koga F, Kajino K, Yoshita S, Ishii C, Tanaka H, Saito K, Masuda H, Fujii Y, Yamada T, Kihara K (2014) Apparent diffusion coefficient value reflects invasive and proliferative potential of bladder cancer. J Magn Reson Imaging 39:172–178.  https://doi.org/10.1002/jmri.24148 CrossRefPubMedGoogle Scholar
  43. 43.
    Sevcenco S, Haitel A, Ponhold L, Susani M, Fajkovic H, Shariat SF, Hiess M, Spick C, Szarvas T, Baltzer PA (2014) Quantitative apparent diffusion coefficient measurements obtained by 3-tesla MRI are correlated with biomarkers of bladder cancer proliferative activity. PLoS One 9:e106866.  https://doi.org/10.1371/journal.pone.0106866 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Zhou G, Chen X, Zhang J, Zhu J, Zong G, Wang Z (2014) Contrast-enhanced dynamic and diffusion-weighted MR imaging at 3.0 T to assess aggressiveness of bladder cancer. Eur J Radiol 83:2013–2018.  https://doi.org/10.1016/j.ejrad.2014.08.012 CrossRefPubMedGoogle Scholar
  45. 45.
    Kikuchi K, Shigihara T, Hashimoto Y, Miyajima M, Haga N, Kojima Y, Shishido F (2017) Apparent diffusion coefficient on magnetic resonance imaging (MRI) in bladder cancer: relations with recurrence/progression risk. Fukushima J Med Sci 63:90–99.  https://doi.org/10.5387/fms.2017-05 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Suo ST, Chen XX, Fan Y, Wu LM, Yao QY, Cao MQ, Liu Q, Xu JR (2014) Histogram analysis of apparent diffusion coefficient at 3.0 T in urinary bladder lesions: correlation with pathologic findings. Acad Radiol 21:1027–1034.  https://doi.org/10.1016/j.acra.2014.03.004 CrossRefPubMedGoogle Scholar
  47. 47.
    Yoshida S, Koga F, Kobayashi S, Tanaka H, Satoh S, Fujii Y, Kihara K (2014) Diffusion-weighted magnetic resonance imaging in management of bladder cancer, particularly with multimodal bladder-sparing strategy. World J Radiol 6:344–354.  https://doi.org/10.4329/wjr.v6.i6.344 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Wang HJ, Pui MH, Guo Y, Li SR, Liu MJ, Guan J, Zhang XL, Feng Y (2014) Value of normalized apparent diffusion coefficient for estimating histological grade of vesical urothelial carcinoma. Clin Radiol 69:727–731.  https://doi.org/10.1016/j.crad.2014.03.001 CrossRefPubMedGoogle Scholar
  49. 49.
    Yamada Y, Kobayashi S, Isoshima S, Arima K, Sakuma H, Sugimura Y (2014) The usefulness of diffusion-weighted magnetic resonance imaging in bladder cancer staging and functional analysis. J Cancer Res Ther 10:878–882.  https://doi.org/10.4103/0973-1482.138225 CrossRefPubMedGoogle Scholar
  50. 50.
    Ohgiya Y, Suyama J, Sai S, Kawahara M, Takeyama N, Ohike N, Sasamori H, Munechika J, Saiki M, Onoda Y, Hirose M, Gokan T (2014) Preoperative T staging of urinary bladder cancer: efficacy of stalk detection and diagnostic performance of diffusion-weighted imaging at 3 T. Magn Reson Med Sci 13:175–181.  https://doi.org/10.2463/mrms.2013-0104 CrossRefPubMedGoogle Scholar
  51. 51.
    Zhai N, Wang YH, Zhu LM, Wang JH, Sun XH, Hu XB, Li X, Yu T, Wang XL, Meng N, Yan QC, Li XJ, Luo YH (2015) Sensitivity and specificity of diffusion-weighted magnetic resonance imaging in diagnosis of bladder cancers. Clin Invest Med 38:E173–E184CrossRefPubMedGoogle Scholar
  52. 52.
    Nakamura Y, Yoshida S, Tanaka H, Inoue M, Ito M, Kijima T, Yokoyama M, Ishioka J, Matsuoka Y, Saito K, Fujii Y, Kihara K (2017) Potential utility of diffusion-weighted magnetic resonance imaging in diagnosis of residual bladder cancer before second transurethral resection. Urol Int 98:298–303.  https://doi.org/10.1159/000456722 CrossRefPubMedGoogle Scholar
  53. 53.
    Wang HJ, Pui MH, Guo Y, Yang D, Pan BT, Zhou XH (2014) Diffusion-weighted MRI in bladder carcinoma: the differentiation between tumor recurrence and benign changes after resection. Abdom Imaging 39:135–141.  https://doi.org/10.1007/s00261-013-0038-0 CrossRefPubMedGoogle Scholar
  54. 54.
    Thoeny HC, Froehlich JM, Triantafyllou M, Huesler J, Bains LJ, Vermathen P, Fleischmann A, Studer UE (2014) Metastases in normal-sized pelvic lymph nodes: detection with diffusion-weighted mr imaging. Radiology 273:125–135.  https://doi.org/10.1148/radiol.14132921 CrossRefPubMedGoogle Scholar
  55. 55.
    Sevcenco S, Ponhold L, Heinz-Peer G, Fajkovic H, Haitel A, Susani M, Shariat SF, Szarvas T, Baltzer PA (2014) Prospective evaluation of diffusion-weighted MRI of the bladder as a biomarker for prediction of bladder cancer aggressiveness. Urol Oncol 32:1166–1171.  https://doi.org/10.1016/j.urolonc.2014.04.019 CrossRefPubMedGoogle Scholar
  56. 56.
    Lin WC, Chen JH (2015) Pitfalls and limitations of diffusion-weighted magnetic resonance imaging in the diagnosis of urinary bladder cancer. Transl Oncol 8:217–230.  https://doi.org/10.1016/j.tranon.2015.04.003 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Nguyen HT, Jia G, Shah ZK, Pohar K, Mortazavi A, Zynger DL, Wei L, Yang X, Clark D, Knopp MV (2015) Prediction of chemotherapeutic response in bladder cancer using K-means clustering of dynamic contrast-enhanced (DCE)-MRI pharmacokinetic parameters. J Magn Reson Imaging 41:1374–1382.  https://doi.org/10.1002/jmri.24663 CrossRefPubMedGoogle Scholar
  58. 58.
    Chakiba C, Cornelis F, Descat E, Gross-Goupil M, Sargos P, Roubaud G, Houédé N (2015) Dynamic contrast enhanced MRI-derived parameters are potential biomarkers of therapeutic response in bladder carcinoma. Eur J Radiol 84:1023–1028.  https://doi.org/10.1016/j.ejrad.2015.02.026 CrossRefPubMedGoogle Scholar
  59. 59.
    de Haas RJ, Steyvers MJ, Fütterer JJ (2014) Multiparametric MRI of the bladder: ready for clinical routine? Am J Roentgenol 202:1187–1195.  https://doi.org/10.2214/AJR.13.12294 CrossRefGoogle Scholar
  60. 60.
    van der Pol CB, Der Van, Shinagare AB, Tirumani SH, Preston MA, Vangel MG, Silverman SG (2018) Bladder cancer local staging: multiparametric MRI performance following transurethral resection. Abdom Radiol.  https://doi.org/10.1007/s00261-017-1449-0 Google Scholar
  61. 61.
    Lakhani A, Khan SR, Bharwani N, Stewart V, Rockall AG, Khan S, Barwick TD (2017) FDG PET/CT pitfalls in gynecologic and genitourinary oncologic imaging. Radiographics 37:577–594.  https://doi.org/10.1148/rg.2017160059 CrossRefPubMedGoogle Scholar
  62. 62.
    Chakraborty D, Mittal BR, Kashyap R, Mete UK, Narang V, Das A, Bhattacharya A, Khandelwal N, Mandal AK (2014) Role of fluorodeoxyglucose positron emission tomography/computed tomography in diagnostic evaluation of carcinoma urinary bladder: comparison with computed tomography. World J Nucl Med 13:34–39.  https://doi.org/10.4103/1450-1147.138572 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Aljabery F, Lindblom G, Skoog S, Shabo I, Olsson H, Rosell J, Jahnson S (2015) PET/CT versus conventional CT for detection of lymph node metastases in patients with locally advanced bladder cancer. BMC Urol 15:87.  https://doi.org/10.1186/s12894-015-0080-z CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Kollberg P, Almquist H, Bläckberg M, Cwikiel M, Gudjonsson S, Lyttkens K, Patschan O, Liedberg F (2017) [18 F]Fluorodeoxyglucose-positron emission tomography/computed tomography response evaluation can predict histological response at surgery after induction chemotherapy for oligometastatic bladder cancer. Scand J Urol 51:308–313.  https://doi.org/10.1080/21681805.2017.1321579 CrossRefPubMedGoogle Scholar
  65. 65.
    Kollberg P, Almquist H, Bläckberg M, Cronberg C, Garpered S, Gudjonsson S, Kleist J, Lyttkens K, Patschan O, Liedberg F (2015) [(18F)]Fluorodeoxyglucose-positron emission tomography/computed tomography improves staging in patients with high-risk muscle-invasive bladder cancer scheduled for radical cystectomy. Scand J Urol 49:296–301.  https://doi.org/10.3109/21681805.2014.990053 CrossRefPubMedGoogle Scholar
  66. 66.
    Mertens LS, Mir MC, Scott AM, Lee ST, Fioole-Bruining A, Vegt E, Vogel WV, Manecksha R, Bolton D, Davis ID, Horenblas S, van Rhijn BW, Lawrentschuk N (2014) 18F-fluorodeoxyglucose–positron emission tomography/computed tomography aids staging and predicts mortality in patients with muscle-invasive bladder cancer. Urology 83:393–398.  https://doi.org/10.1016/j.urology.2013.10.032 CrossRefPubMedGoogle Scholar
  67. 67.
    Sharma A, Mete UK, Sood A, Kakkar N, Gorla AK, Mittal BR (2017) Utility of early dynamic and delayed post-diuretic 18F-FDG PET/CT SUV max in predicting tumour grade and T-stage of urinary bladder carcinoma: results from a prospective single centre study. BJR 90:20160787.  https://doi.org/10.1259/bjr.20160787 CrossRefPubMedGoogle Scholar
  68. 68.
    Jeong IG, Hong S, You D, Hong JH, Ahn H, Kim CS (2015) FDG PET-CT for lymph node staging of bladder cancer: a prospective study of patients with extended pelvic lymphadenectomy. Ann Surg Oncol 22:3150–3156.  https://doi.org/10.1245/s10434-015-4369-7 CrossRefPubMedGoogle Scholar
  69. 69.
    Goodfellow H, Viney Z, Hughes P, Rankin S, Rottenberg G, Hughes S, Evison F, Dasgupta P, O’Brien T, Khan MS (2014) Role of fluorodeoxyglucose positron emission tomography (FDG PET)-computed tomography (CT) in the staging of bladder cancer. BJU Int 114:389–395.  https://doi.org/10.1111/bju.12608 PubMedGoogle Scholar
  70. 70.
    Graziani T, Ceci F, Lopes FL, Chichero J, Castellucci P, Schiavina R, Bianchi L, Chondrogiannis S, Colletti PM, Costa S, Rubello D, Fanti S (2015) 11C-choline PET/CT for restaging of bladder cancer. Clin Nucl Med 40:e1–e5.  https://doi.org/10.1097/RLU.0000000000000573 CrossRefPubMedGoogle Scholar
  71. 71.
    Maurer T, Horn T, Souvatzoglou M, Eiber M, Beer AJ, Heck MM, Haller B, Gschwend JE, Schwaiger M, Treiber U, Krause BJ (2014) Prognostic value of 11C-choline PET/CT and CT for predicting survival of bladder cancer patients treated with radical cystectomy. Urol Int 93:207–213.  https://doi.org/10.1159/000357686 CrossRefPubMedGoogle Scholar
  72. 72.
    Brunocilla E, Ceci F, Schiavina R, Castellucci P, Maffione AM, Cevenini M, Bianchi L, Borghesi M, Giunchi F, Fiorentino M, Chondrogiannis S, Colletti PM, Rubello D, Fanti S, Martorana G (2014) Diagnostic accuracy of (11)C-choline PET/CT in preoperative lymph node staging of bladder cancer: a systematic comparison with contrast-enhanced CT and histologic findings. Clin Nucl Med 39:e308–e312.  https://doi.org/10.1097/RLU.0000000000000342 CrossRefPubMedGoogle Scholar
  73. 73.
    Ceci F, Bianchi L, Graziani T, Castellucci P, Pultrone C, Eugenio B, Martorana G, Colletti PM, Rubello D, Fanti S, Schiavina R (2015) 11C-choline PET/CT and bladder cancer: lymph node metastasis assessment with pathological specimens as reference standard. Clin Nucl Med 40:e124–e128.  https://doi.org/10.1097/RLU.0000000000000604 CrossRefPubMedGoogle Scholar
  74. 74.
    Rosenkrantz AB, Friedman KP, Ponzo F, Raad RA, Jackson K, Huang WC, Balar AV (2017) Prospective pilot study to evaluate the incremental value of PET information in patients with bladder cancer undergoing 18F-FDG simultaneous PET/MRI. Clin Nucl Med 42:e8–e15CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Partovi S, Robbin MR, Steinbach OC, Kohan A, Rubbert C, Vercher-Conejero JL, Kolthammer JA, Faulhaber P, Paspulati RM, Ros PR (2014) Initial experience of MR/PET in a clinical cancer center. J Magn Reson Imaging 39:768–780.  https://doi.org/10.1002/jmri.24334 CrossRefPubMedGoogle Scholar
  76. 76.
    Rosenkrantz AB, Friedman K, Chandarana H, Melsaether A, Moy L, Ding YS, Jhaveri K, Beltran L, Jain R (2016) Current status of hybrid PET/MRI in oncologic imaging. Am J Roentgenol 206:162–172.  https://doi.org/10.2214/AJR.15.14968 CrossRefGoogle Scholar
  77. 77.
    Rosenkrantz AB, Balar AV, Huang WC, Jackson K, Friedman KP (2015) Comparison of coregistration accuracy of pelvic structures between sequential and simultaneous imaging during Hybrid Pet/MRI in patients with bladder cancer. Clin Nucl Med 40:637–641.  https://doi.org/10.1097/RLU.0000000000000772 CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Civelek AC, Apolo A, Agarwal P, Evers R, Bluemke D, Malayeri A (2016) 18F-FDG PET-MRI in the management of muscle invasive bladder cancer: challenges in imaging and solutions. J Nucl Med 57:1292CrossRefGoogle Scholar
  79. 79.
    Jadvar H, Desai B, Conti PS (2015) Sodium 18F-fluoride PET/CT of bone, joint and other disorders. Semin Nucl Med 45:58–65.  https://doi.org/10.1053/j.semnuclmed.2014.07.008 CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Mick CG, James T, Hill JD, Williams P, Perry M (2014) Molecular imaging in oncology: 18 F-sodium fluoride pet imaging of osseous metastatic disease. Am J Roentgenol 203:263–271.  https://doi.org/10.2214/AJR.13.12158 CrossRefGoogle Scholar
  81. 81.
    McInnes MD, Siemens DR, Mackillop WJ, Peng Y, Wei S, Schieda N, Booth CM (2016) Utilisation of preoperative imaging for muscle-invasive bladder cancer: a population-based study. BJU Int 117:430–438.  https://doi.org/10.1111/bju.13034 CrossRefPubMedGoogle Scholar

Copyright information

© Italian Association of Nuclear Medicine and Molecular Imaging 2018

Authors and Affiliations

  • Ebru Salmanoglu
    • 1
  • Ethan Halpern
    • 2
  • Eduoard J. Trabulsi
    • 2
  • Sung Kim
    • 2
  • Mathew L. Thakur
    • 2
  1. 1.Kahramanmaras Sutcu Imam UniversityKahramanmarasTurkey
  2. 2.Thomas Jefferson UniversityPhiladelphiaUSA

Personalised recommendations