Skip to main content

Advertisement

Log in

Therapeutic options to overcome tumor hypoxia in radiation oncology

  • Expert Review
  • Published:
Clinical and Translational Imaging Aims and scope Submit manuscript

Abstract

Purpose

Expert review summarizing the overcome tumor cell hypoxia by treatment modification in radiation oncology.

Methods

An extensive literature search regarding various means of treatment modification was performed and key papers on those modifications were included in this review article.

Results

Based on the identified key papers the means to overcome hypoxia in radiation oncology were summarized in this review article, e.g., increasing levels of oxygen, combining radiotherapy with agents counteracting hypoxia, or modifying radiation treatment itself.

Conclusions

This review summarizes the results of preclinical and clinical studies counteracting hypoxia and highlights the measures that have found their way into clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Brizel DM, Sibley GS, Prosnitz LR, Scher RL, Dewhirst MW (1997) Tumor hypoxia adversely affects the prognosis of carcinoma of the head and neck. Int J Radiat Oncol Biol Phys 38(2):285–289

    Article  CAS  PubMed  Google Scholar 

  2. Nordsmark M (1996) Direct measurements of tumor-tissue pO2. A way of selecting patients for hyperoxic treatment. Strahlenther Onkol 172(Suppl 2):8–9

    PubMed  Google Scholar 

  3. Nordsmark M, Bentzen SM, Rudat V, Brizel D, Lartigau E, Stadler P, Becker A, Adam M, Molls M, Dunst J, Terris DJ, Overgaard J (2005) Prognostic value of tumor oxygenation in 397 head and neck tumors after primary radiation therapy. An international multi-center study. Radiother Oncol 77(1):18–24

    Article  PubMed  Google Scholar 

  4. Nordsmark M, Loncaster J, Aquino-Parsons C, Chou SC, Gebski V, West C, Lindegaard JC, Havsteen H, Davidson SE, Hunter R, Raleigh JA, Overgaard J (2006) The prognostic value of pimonidazole and tumour pO2 in human cervix carcinomas after radiation therapy: a prospective international multi-center study. Radiother Oncol 80(2):123–131

    Article  CAS  PubMed  Google Scholar 

  5. Evans SM, Hahn S, Pook DR, Jenkins WT, Chalian AA, Zhang P, Stevens C, Weber R, Weinstein G, Benjamin I, Mirza N, Morgan M, Rubin S, McKenna WG, Lord EM, Koch CJ (2000) Detection of hypoxia in human squamous cell carcinoma by EF5 binding. Cancer Res 60(7):2018–2024

    CAS  PubMed  Google Scholar 

  6. Evans SM, Judy KD, Dunphy I, Jenkins WT, Nelson PT, Collins R, Wileyto EP, Jenkins K, Hahn SM, Stevens CW, Judkins AR, Phillips P, Geoerger B, Koch CJ (2004) Comparative measurements of hypoxia in human brain tumors using needle electrodes and EF5 binding. Cancer Res 64(5):1886–1892

    Article  CAS  PubMed  Google Scholar 

  7. Hoogsteen IJ, Lok J, Marres HA, Takes RP, Rijken PF, van der Kogel AJ, Kaanders JH (2009) Hypoxia in larynx carcinomas assessed by pimonidazole binding and the value of CA-IX and vascularity as surrogate markers of hypoxia. Eur J Cancer 45(16):2906–2914. doi:10.1016/j.ejca.2009.07.012

    Article  CAS  PubMed  Google Scholar 

  8. Hoogsteen IJ, Pop LA, Marres HA, Merkx MA, van den Hoogen FJ, van der Kogel AJ, Kaanders JH (2006) Oxygen-modifying treatment with ARCON reduces the prognostic significance of hemoglobin in squamous cell carcinoma of the head and neck. Int J Radiat Oncol Biol Phys 64(1):83–89. doi:10.1016/j.ijrobp.2005.07.003 (S0360-3016(05)01163-6 [pii])

    Article  CAS  PubMed  Google Scholar 

  9. Rademakers SE, Lok J, van der Kogel AJ, Bussink J, Kaanders JH (2011) Metabolic markers in relation to hypoxia; staining patterns and colocalization of pimonidazole, HIF-1alpha, CAIX, LDH-5, GLUT-1, MCT1 and MCT4. BMC Cancer 11:167. doi:10.1186/1471-2407-11-167

    Article  PubMed Central  PubMed  Google Scholar 

  10. Rademakers SE, Hoogsteen IJ, Rijken PF, Oosterwijk E, Terhaard CH, Doornaert PA, Langendijk JA, van den Ende P, Takes R, De Bree R, van der Kogel AJ, Bussink J, Kaanders JH (2013) Pattern of CAIX expression is prognostic for outcome and predicts response to ARCON in patients with laryngeal cancer treated in a phase III randomized trial. Radiother Oncol 108(3):517–522. doi:10.1016/j.radonc.2013.04.022

    Article  CAS  PubMed  Google Scholar 

  11. Alonzi R, Padhani AR, Allen C (2007) Dynamic contrast enhanced MRI in prostate cancer. Eur J Radiol 63(3):335–350. doi:10.1016/j.ejrad.2007.06.028

    Article  PubMed  Google Scholar 

  12. Eschmann SM, Paulsen F, Reimold M, Dittmann H, Welz S, Reischl G, Machulla HJ, Bares R (2005) Prognostic impact of hypoxia imaging with 18F-misonidazole PET in non-small cell lung cancer and head and neck cancer before radiotherapy. J Nucl Med 46(2):253–260

    PubMed  Google Scholar 

  13. Grosu AL, Souvatzoglou M, Roper B, Dobritz M, Wiedenmann N, Jacob V, Wester HJ, Reischl G, Machulla HJ, Schwaiger M, Molls M, Piert M (2007) Hypoxia imaging with FAZA-PET and theoretical considerations with regard to dose painting for individualization of radiotherapy in patients with head and neck cancer. Int J Radiat Oncol Biol Phys 69(2):541–551

    Article  CAS  PubMed  Google Scholar 

  14. Hoskin PJ, Carnell DM, Taylor NJ, Smith RE, Stirling JJ, Daley FM, Saunders MI, Bentzen SM, Collins DJ, d’Arcy JA, Padhani AP (2007) Hypoxia in prostate cancer: correlation of BOLD-MRI with pimonidazole immunohistochemistry-initial observations. Int J Radiat Oncol Biol Phys 68(4):1065–1071. doi:10.1016/j.ijrobp.2007.01.018

    Article  CAS  PubMed  Google Scholar 

  15. Mortensen LS, Johansen J, Kallehauge J, Primdahl H, Busk M, Lassen P, Alsner J, Sorensen BS, Toustrup K, Jakobsen S, Petersen J, Petersen H, Theil J, Nordsmark M, Overgaard J (2012) FAZA PET/CT hypoxia imaging in patients with squamous cell carcinoma of the head and neck treated with radiotherapy: results from the DAHANCA 24 trial. Radiother Oncol 105(1):14–20. doi:10.1016/j.radonc.2012.09.015

    Article  PubMed  Google Scholar 

  16. Servagi-Vernat S, Differding S, Hanin FX, Labar D, Bol A, Lee JA, Gregoire V (2014) A prospective clinical study of (1)(8)F-FAZA PET-CT hypoxia imaging in head and neck squamous cell carcinoma before and during radiation therapy. Eur J Nucl Med Mol Imaging 41(8):1544–1552. doi:10.1007/s00259-014-2730-x

    Article  CAS  PubMed  Google Scholar 

  17. Taylor NJ, Baddeley H, Goodchild KA, Powell ME, Thoumine M, Culver LA, Stirling JJ, Saunders MI, Hoskin PJ, Phillips H, Padhani AR, Griffiths JR (2001) BOLD MRI of human tumor oxygenation during carbogen breathing. J Magn Reson Imaging 14(2):156–163

    Article  CAS  PubMed  Google Scholar 

  18. Thorwarth D, Eschmann SM, Scheiderbauer J, Paulsen F, Alber M (2005) Kinetic analysis of dynamic 18F-fluoromisonidazole PET correlates with radiation treatment outcome in head-and-neck cancer. BMC Cancer 5:152

    Article  PubMed Central  PubMed  Google Scholar 

  19. Tran LB, Bol A, Labar D, Jordan B, Magat J, Mignion L, Gregoire V, Gallez B (2012) Hypoxia imaging with the nitroimidazole 18F-FAZA PET tracer: a comparison with OxyLite, EPR oximetry and 19F-MRI relaxometry. Radiother Oncol 105(1):29–35. doi:10.1016/j.radonc.2012.04.011

    Article  CAS  PubMed  Google Scholar 

  20. Tran LB, Bol A, Labar D, Karroum O, Bol V, Jordan B, Gregoire V, Gallez B (2014) Potential role of hypoxia imaging using (18)F-FAZA PET to guide hypoxia-driven interventions (carbogen breathing or dose escalation) in radiation therapy. Radiother Oncol 113(2):204–209. doi:10.1016/j.radonc.2014.09.016

    Article  PubMed  Google Scholar 

  21. Crabtree HG, Cramer W (1934) The action of radium on cancer cells. III. Factors determining the susceptibility of cancer cells to gamma radiation. Cancer Res Fund 11:103–117

    Google Scholar 

  22. Garcia-Angulo AH (1988) Radiosensitizer metronidazole plus standard radiotherapy for advanced cervical carcinoma. In: Sugahara T (ed) Hyperbaric Oncology, vol 1. Taylor and Francis, Routledge, pp 633–636

    Google Scholar 

  23. Machtay M, Pajak TF, Suntharalingam M, Shenouda G, Hershock D, Stripp DC, Cmelak AJ, Schulsinger A, Fu KK, Radiation Therapy Oncology G (2007) Radiotherapy with or without erythropoietin for anemic patients with head and neck cancer: a randomized trial of the Radiation Therapy Oncology Group (RTOG 99-03). Int J Radiat Oncol Biol Phys 69(4):1008–1017. doi:10.1016/j.ijrobp.2007.04.063

    Article  CAS  PubMed  Google Scholar 

  24. Henke M, Laszig R, Rube C, Schafer U, Haase KD, Schilcher B, Mose S, Beer KT, Burger U, Dougherty C, Frommhold H (2003) Erythropoietin to treat head and neck cancer patients with anaemia undergoing radiotherapy: randomised, double-blind, placebo-controlled trial. Lancet 362(9392):1255–1260. doi:10.1016/S0140-6736(03)14567-9

    Article  CAS  PubMed  Google Scholar 

  25. Lambin P, Ramaekers BL, van Mastrigt GA, Van den Ende P, de Jong J, De Ruysscher DK, Pijls-Johannesma M (2009) Erythropoietin as an adjuvant treatment with (chemo) radiation therapy for head and neck cancer. Cochrane Database Syst Rev 3:CD006158. doi:10.1002/14651858.CD006158.pub2

    Google Scholar 

  26. Bennett CL, Silver SM, Djulbegovic B, Samaras AT, Blau CA, Gleason KJ, Barnato SE, Elverman KM, Courtney DM, McKoy JM, Edwards BJ, Tigue CC, Raisch DW, Yarnold PR, Dorr DA, Kuzel TM, Tallman MS, Trifilio SM, West DP, Lai SY, Henke M (2008) Venous thromboembolism and mortality associated with recombinant erythropoietin and darbepoetin administration for the treatment of cancer-associated anemia. JAMA 299(8):914–924. doi:10.1001/jama.299.8.914

    Article  CAS  PubMed  Google Scholar 

  27. Churchill-Davidson I, Sanger C, Thomlinson RH (1955) High-pressure oxygen and radiotherapy. Lancet 268(6874):1091–1095

    Article  CAS  PubMed  Google Scholar 

  28. Augenstein D (1968) Hyperbaric oxygen radiation therapy. Nurs Forum 7(3):324–335

    Article  CAS  PubMed  Google Scholar 

  29. Henk JM, Kunkler PB, Smith CW (1977) Radiotherapy and hyperbaric oxygen in head and neck cancer. Final report of first controlled clinical trial. Lancet 2(8029):101–103

    Article  CAS  PubMed  Google Scholar 

  30. Watson ER, Halnan KE, Dische S, Saunders MI, Cade IS, McEwen JB, Wiernik G, Perrins DJ, Sutherland I (1978) Hyperbaric oxygen and radiotherapy: a Medical Research Council trial in carcinoma of the cervix. Br J Radiol 51(611):879–887. doi:10.1259/0007-1285-51-611-879

    Article  CAS  PubMed  Google Scholar 

  31. Dische S (1978) Hyperbaric oxygen: the Medical Research Council trials and their clinical significance. Br J Radiol 51(611):888–894. doi:10.1259/0007-1285-51-611-888

    Article  CAS  PubMed  Google Scholar 

  32. Overgaard J, Horsman MR (1996) Modification of hypoxia-induced radioresistance in tumors by the use of oxygen and sensitizers. Semin Radiat Oncol 6(1):10–21. doi:10.1053/SRAO0060010 (00600010 [pii])

    Article  CAS  PubMed  Google Scholar 

  33. Kaanders JH, Pop LA, Marres HA, van der Maazen RW, van der Kogel AJ, van Daal WA (1995) Radiotherapy with carbogen breathing and nicotinamide in head and neck cancer: feasibility and toxicity. Radiother Oncol 37(3):190–198

    Article  CAS  PubMed  Google Scholar 

  34. Kaanders JH, Pop LA, Marres HA, Bruaset I, van den Hoogen FJ, Merkx MA, van der Kogel AJ (2002) ARCON: experience in 215 patients with advanced head-and-neck cancer. Int J Radiat Oncol Biol Phys 52(3):769–778

    Article  PubMed  Google Scholar 

  35. Hoskin PJ, Saunders MI, Phillips H, Cladd H, Powell ME, Goodchild K, Stratford MR, Rojas A (1997) Carbogen and nicotinamide in the treatment of bladder cancer with radical radiotherapy. Br J Cancer 76(2):260–263

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Saunders MI, Hoskin PJ, Pigott K, Powell ME, Goodchild K, Dische S, Denekamp J, Stratford MR, Dennis MF, Rojas AM (1997) Accelerated radiotherapy, carbogen and nicotinamide (ARCON) in locally advanced head and neck cancer: a feasibility study. Radiother Oncol 45(2):159–166

    Article  CAS  PubMed  Google Scholar 

  37. van der Maazen RW, Thijssen HO, Kaanders JH, de Koster A, Keyser A, Prick MJ, Grotenhuis JA, Wesseling P, van der Kogel AJ (1995) Conventional radiotherapy combined with carbogen breathing and nicotinamide for malignant gliomas. Radiother Oncol 35(2):118–122

    Article  PubMed  Google Scholar 

  38. Janssens GO, Rademakers SE, Terhaard CH, Doornaert PA, Bijl HP, van den Ende P, Chin A, Marres HA, de Bree R, van der Kogel AJ, Hoogsteen IJ, Bussink J, Span PN, Kaanders JH (2012) Accelerated radiotherapy with carbogen and nicotinamide for laryngeal cancer: results of a phase III randomized trial. J Clin Oncol 30(15):1777–1783. doi:10.1200/JCO.2011.35.9315

    Article  CAS  PubMed  Google Scholar 

  39. Overgaard J (1994) Clinical evaluation of nitroimidazoles as modifiers of hypoxia in solid tumors. Oncol Res 6(10–11):509–518

    CAS  PubMed  Google Scholar 

  40. Schreiber A, Krause M, Zips D, Dorfler A, Richter K, Vettermann S, Petersen C, Beuthien-Baumann B, Thummler D, Baumann M (2004) Effect of the hypoxic cell sensitizer isometronidazole on local control of two human squamous cell carcinomas after fractionated irradiation. Strahlenther Onkol 180(6):375–382. doi:10.1007/s00066-004-1206-5

    Article  PubMed  Google Scholar 

  41. Murata R, Tsujitani M, Horsman MR (2008) Enhanced local tumour control after single or fractionated radiation treatment using the hypoxic cell radiosensitizer doranidazole. Radiother Oncol 87(3):331–338. doi:10.1016/j.radonc.2008.03.002

    Article  CAS  PubMed  Google Scholar 

  42. Dische S (1985) Chemical sensitizers for hypoxic cells: a decade of experience in clinical radiotherapy. Radiother Oncol 3(2):97–115

    Article  CAS  PubMed  Google Scholar 

  43. Overgaard J, Overgaard M, Nielsen OS, Pedersen AK, Timothy AR (1982) A comparative investigation of nimorazole and misonidazole as hypoxic radiosensitizers in a C3H mammary carcinoma in vivo. Br J Cancer 46(6):904–911

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Evans SM, LaCreta F, Helfand S, VanWinkle T, Curran WJ Jr, Brown DQ, Hanks G (1991) Technique, pharmacokinetics, toxicity, and efficacy of intratumoral etanidazole and radiotherapy for treatment of spontaneous feline oral squamous cell carcinoma. Int J Radiat Oncol Biol Phys 20(4):703–708

    Article  CAS  PubMed  Google Scholar 

  45. Overgaard J, Hansen HS, Overgaard M, Bastholt L, Berthelsen A, Specht L, Lindelov B, Jorgensen K (1998) A randomized double-blind phase III study of nimorazole as a hypoxic radiosensitizer of primary radiotherapy in supraglottic larynx and pharynx carcinoma. Results of the Danish Head and Neck Cancer Study (DAHANCA) Protocol 5-85. Radiother Oncol 46(2):135–146

    Article  CAS  PubMed  Google Scholar 

  46. Overgaard J, Hansen HS, Specht L, Overgaard M, Grau C, Andersen E, Bentzen J, Bastholt L, Hansen O, Johansen J, Andersen L, Evensen JF (2003) Five compared with six fractions per week of conventional radiotherapy of squamous-cell carcinoma of head and neck: DAHANCA 6 and 7 randomised controlled trial. Lancet 362(9388):933–940

    Article  PubMed  Google Scholar 

  47. Overgaard J (2011) Hypoxic modification of radiotherapy in squamous cell carcinoma of the head and neck–a systematic review and meta-analysis. Radiother Oncol 100(1):22–32. doi:10.1016/j.radonc.2011.03.004

    Article  PubMed  Google Scholar 

  48. Koi L, Moebius L, Weise C, Erdmann C, Valentini C, Schmidt M, Krause M, Baumann M Biomarker-based hypoxia-adapted radiochemotherapy: preclinical study in HPV ± H&N cancer xenografts. In: ESTRO, Turin, 2016. Elsevier, p. S59

  49. Mistry IN, Thomas M, Calder EDD, Conway SJ, Hammond EM (2017) Clinical advances of hypoxia-activated prodrugs in combination with radiotherapy. Int J Radiat Oncol Biol Phys 98(5):1183–1196

    Article  CAS  PubMed  Google Scholar 

  50. Zeman EM, Brown JM, Lemmon MJ, Hirst VK, Lee WW (1986) SR-4233: a new bioreductive agent with high selective toxicity for hypoxic mammalian cells. Int J Radiat Oncol Biol Phys 12(7):1239–1242

    Article  CAS  PubMed  Google Scholar 

  51. Zeman EM, Hirst VK, Lemmon MJ, Brown JM (1988) Enhancement of radiation-induced tumor cell killing by the hypoxic cell toxin SR 4233. Radiother Oncol 12(3):209–218

    Article  CAS  PubMed  Google Scholar 

  52. Brown JM, Lemmon MJ (1991) SR 4233: a tumor specific radiosensitizer active in fractionated radiation regimes. Radiother Oncol 20(Suppl 1):151–156

    Article  CAS  PubMed  Google Scholar 

  53. DiSilvestro PA, Ali S, Craighead PS, Lucci JA, Lee YC, Cohn DE, Spirtos NM, Tewari KS, Muller C, Gajewski WH, Steinhoff MM, Monk BJ (2014) Phase III randomized trial of weekly cisplatin and irradiation versus cisplatin and tirapazamine and irradiation in stages IB2, IIA, IIB, IIIB, and IVA cervical carcinoma limited to the pelvis: a Gynecologic Oncology Group study. J Clin Oncol 32(5):458–464. doi:10.1200/JCO.2013.51.4265

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Dorie MJ, Brown JM (1993) Tumor-specific, schedule-dependent interaction between tirapazamine (SR 4233) and cisplatin. Cancer Res 53(19):4633–4636

    CAS  PubMed  Google Scholar 

  55. Rischin D, Peters LJ, O’Sullivan B, Giralt J, Fisher R, Yuen K, Trotti A, Bernier J, Bourhis J, Ringash J, Henke M, Kenny L (2010) Tirapazamine, cisplatin, and radiation versus cisplatin and radiation for advanced squamous cell carcinoma of the head and neck (TROG 02.02, HeadSTART): a phase III trial of the Trans-Tasman Radiation Oncology Group. J Clin Oncol 28(18):2989–2995. doi:10.1200/JCO.2009.27.4449

    Article  CAS  PubMed  Google Scholar 

  56. Weiss GJ, Infante JR, Chiorean EG, Borad MJ, Bendell JC, Molina JR, Tibes R, Ramanathan RK, Lewandowski K, Jones SF, Lacouture ME, Langmuir VK, Lee H, Kroll S, Burris HA 3rd (2011) Phase 1 study of the safety, tolerability, and pharmacokinetics of TH-302, a hypoxia-activated prodrug, in patients with advanced solid malignancies. Clin Cancer Res 17(9):2997–3004. doi:10.1158/1078-0432.CCR-10-3425

    Article  CAS  PubMed  Google Scholar 

  57. Lohse I, Rasowski J, Cao P, Pintilie M, Do T, Tsao MS, Hill RP, Hedley DW (2016) Targeting hypoxic microenvironment of pancreatic xenografts with the hypoxia-activated prodrug TH-302. Oncotarget 7(23):33571–33580. doi:10.18632/oncotarget.9654

    Article  PubMed Central  PubMed  Google Scholar 

  58. Nytko KJ, Grgic I, Bender S, Ott J, Guckenberger M, Riesterer O, Pruschy M (2017) The hypoxia-activated prodrug evofosfamide in combination with multiple regimens of radiotherapy. Oncotarget 8(14):23702–23712. doi:10.18632/oncotarget.15784

    PubMed Central  PubMed  Google Scholar 

  59. Hunter FW, Young RJ, Shalev Z, Vellanki RN, Wang J, Gu Y, Joshi N, Sreebhavan S, Weinreb I, Goldstein DP, Moffat J, Ketela T, Brown KR, Koritzinsky M, Solomon B, Rischin D, Wilson WR, Wouters BG (2015) Identification of P450 oxidoreductase as a major determinant of sensitivity to hypoxia-activated prodrugs. Cancer Res 75(19):4211–4223. doi:10.1158/0008-5472.CAN-15-1107

    Article  CAS  PubMed  Google Scholar 

  60. Tap W, Papai Z, van Tine B, Attai S, Ganjoo K, Jones RL, Schuetze S, Reed D, Chawla SP, Riedel R, Krarup-Hansen A, Italiano A, Hohenberger P, Grignani G, GCranmer L, Alcindor T, Lopez-Pousa A, Pearce T, Kroll S, Schoffski P (2016) Randomized phase 3, multicenter, open-label study comparing evofosfamide (Evo) in combination with doxorubicin (D) vs. D alone in patients (pts) with advanced soft tissue sarcoma (STS): study TH-CR-406/SARC021 In: ESMO, Copenhagen, 2016. vol Suppl 6. p 1395O

  61. Van Cutsem E, Lenz HJ, Furuse J, Tabernero J, Heinemann V, Ioka T, Bazin I, Ueno M, Csoszi T, Wasan H, Melichar B, Karasek P, Macarulla T, Ponce CG, Kalinka-Warzocha E, Horvath Z, Prenen H, Schlichting M, Mehdi F, Bendell JC (2016) Evofosfamide (TH-302) in combination with gemcitabine in previously untreated patients with metastatic or locally advanced unresectable pancreatic ductal adenocarcinoma: primary analysis of the randomized, double-blind phase III MAESTRO study. In: ASCO, 2016, vol 4 (Suppl.), pp 193–193

  62. Larue RT, Van De Voorde L, Berbee M, van Elmpt WJ, Dubois LJ, Panth KM, Peeters SG, Claessens A, Schreurs WM, Nap M, Warmerdam FA, Erdkamp FL, Sosef MN, Lambin P (2016) A phase 1 ‘window-of-opportunity’ trial testing evofosfamide (TH-302), a tumour-selective hypoxia-activated cytotoxic prodrug, with preoperative chemoradiotherapy in oesophageal adenocarcinoma patients. BMC Cancer 16:644. doi:10.1186/s12885-016-2709-z

    Article  PubMed Central  PubMed  Google Scholar 

  63. Mowday AM, Guise CP, Ackerley DF, Minton NP, Lambin P, Dubois LJ, Theys J, Smaill JB, Patterson AV (2016) Advancing clostridia to clinical trial: past lessons and recent progress. Cancers (Basel) 8(7):63. doi:10.3390/cancers8070063

    Article  Google Scholar 

  64. Theys J, Pennington O, Dubois L, Anlezark G, Vaughan T, Mengesha A, Landuyt W, Anne J, Burke PJ, Durre P, Wouters BG, Minton NP, Lambin P (2006) Repeated cycles of Clostridium-directed enzyme prodrug therapy result in sustained antitumour effects in vivo. Br J Cancer 95(9):1212–1219. doi:10.1038/sj.bjc.6603367

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Heap JT, Theys J, Ehsaan M, Kubiak AM, Dubois L, Paesmans K, Mellaert LV, Knox R, Kuehne SA, Lambin P, Minton NP (2014) Spores of Clostridium engineered for clinical efficacy and safety cause regression and cure of tumors in vivo. Oncotarget 5(7):1761–1769. doi:10.18632/oncotarget.1761

    Article  PubMed Central  PubMed  Google Scholar 

  66. Peeters SG, Zegers CM, Biemans R, Lieuwes NG, van Stiphout RG, Yaromina A, Sun JD, Hart CP, Windhorst AD, van Elmpt W, Dubois LJ, Lambin P (2015) TH-302 in combination with radiotherapy enhances the therapeutic outcome and is associated with pretreatment [18F]HX4 hypoxia PET imaging. Clin Cancer Res 21(13):2984–2992. doi:10.1158/1078-0432.CCR-15-0018

    Article  CAS  PubMed  Google Scholar 

  67. Peeters SG, Zegers CM, Yaromina A, Van Elmpt W, Dubois L, Lambin P (2015) Current preclinical and clinical applications of hypoxia PET imaging using 2-nitroimidazoles. Q J Nucl Med Mol Imaging 59(1):39–57

    CAS  PubMed  Google Scholar 

  68. Yaromina A, Granzier M, Biemans R, Lieuwes N, van Elmpt W, Shakirin G, Dubois L, Lambin P (2017) A novel concept for tumour targeting with radiation: inverse dose-painting or targeting the “Low Drug Uptake Volume”. Radiother Oncol. doi:10.1016/j.radonc.2017.04.020

    Google Scholar 

  69. Kennedy KA, Rockwell S, Sartorelli AC (1980) Preferential activation of mitomycin C to cytotoxic metabolites by hypoxic tumor cells. Cancer Res 40(7):2356–2360

    CAS  PubMed  Google Scholar 

  70. Grau C, Overgaard J (1991) Radiosensitizing and cytotoxic properties of mitomycin C in a C3H mouse mammary carcinoma in vivo. Int J Radiat Oncol Biol Phys 20(2):265–269

    Article  CAS  PubMed  Google Scholar 

  71. Rockwell S (1983) Effects of mitomycin C alone and in combination with X-rays on EMT6 mouse mammary tumors in vivo. J Natl Cancer Inst 71(4):765–771

    CAS  PubMed  Google Scholar 

  72. Majmundar AJ, Wong WJ, Simon MC (2010) Hypoxia-inducible factors and the response to hypoxic stress. Mol Cell 40(2):294–309. doi:10.1016/j.molcel.2010.09.022

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Helbig L, Koi L, Bruchner K, Gurtner K, Hess-Stumpp H, Unterschemmann K, Baumann M, Zips D, Yaromina A (2014) BAY 87-2243, a novel inhibitor of hypoxia-induced gene activation, improves local tumor control after fractionated irradiation in a schedule-dependent manner in head and neck human xenografts. Radiat Oncol 9:207. doi:10.1186/1748-717X-9-207

    Article  PubMed Central  PubMed  Google Scholar 

  74. Helbig L, Koi L, Bruchner K, Gurtner K, Hess-Stumpp H, Unterschemmann K, Pruschy M, Baumann M, Yaromina A, Zips D (2014) Hypoxia-inducible factor pathway inhibition resolves tumor hypoxia and improves local tumor control after single-dose irradiation. Int J Radiat Oncol Biol Phys 88(1):159–166. doi:10.1016/j.ijrobp.2013.09.047

    Article  CAS  PubMed  Google Scholar 

  75. Meijer TW, Kaanders JH, Span PN, Bussink J (2012) Targeting hypoxia, HIF-1, and tumor glucose metabolism to improve radiotherapy efficacy. Clin Cancer Res 18(20):5585–5594. doi:10.1158/1078-0432.CCR-12-0858

    Article  CAS  PubMed  Google Scholar 

  76. Dubois LJ, Niemans R, van Kuijk SJ, Panth KM, Parvathaneni NK, Peeters SG, Zegers CM, Rekers NH, van Gisbergen MW, Biemans R, Lieuwes NG, Spiegelberg L, Yaromina A, Winum JY, Vooijs M, Lambin P (2015) New ways to image and target tumour hypoxia and its molecular responses. Radiother Oncol 116(3):352–357. doi:10.1016/j.radonc.2015.08.022

    Article  CAS  PubMed  Google Scholar 

  77. Hoogsteen IJ, Marres HA, Wijffels KI, Rijken PF, Peters JP, van den Hoogen FJ, Oosterwijk E, van der Kogel AJ, Kaanders JH (2005) Colocalization of carbonic anhydrase 9 expression and cell proliferation in human head and neck squamous cell carcinoma. Clin Cancer Res 11(1):97–106 (11/1/97 [pii])

    CAS  PubMed  Google Scholar 

  78. van Kuijk SJ, Yaromina A, Houben R, Niemans R, Lambin D, Dubois LJ (2016) Prognostic significance of carbonic anhydrase IX expression in cancer patients: a meta-analysis. Front Oncol 6:69. doi:10.3389/fonc.2016.00069

    PubMed Central  PubMed  Google Scholar 

  79. Dubois L, Peeters S, Lieuwes NG, Geusens N, Thiry A, Wigfield S, Carta F, McIntyre A, Scozzafava A, Dogne JM, Supuran CT, Harris AL, Masereel B, Lambin P (2011) Specific inhibition of carbonic anhydrase IX activity enhances the in vivo therapeutic effect of tumor irradiation. Radiother Oncol 99(3):424–431. doi:10.1016/j.radonc.2011.05.045

    Article  CAS  PubMed  Google Scholar 

  80. Dubois L, Peeters SG, van Kuijk SJ, Yaromina A, Lieuwes NG, Saraya R, Biemans R, Rami M, Parvathaneni NK, Vullo D, Vooijs M, Supuran CT, Winum JY, Lambin P (2013) Targeting carbonic anhydrase IX by nitroimidazole based sulfamides enhances the therapeutic effect of tumor irradiation: a new concept of dual targeting drugs. Radiother Oncol 108(3):523–528. doi:10.1016/j.radonc.2013.06.018

    Article  CAS  PubMed  Google Scholar 

  81. van Kuijk SJ, Parvathaneni NK, Niemans R, van Gisbergen MW, Carta F, Vullo D, Pastorekova S, Yaromina A, Supuran CT, Dubois LJ, Winum JY (2017) New approach of delivering cytotoxic drugs towards CAIX expressing cells: a concept of dual-target drugs. Eur J Med Chem 127:691–702

    Article  PubMed  Google Scholar 

  82. Railton R, Porter D, Lawson RC, Hannan WJ (1974) The oxygen enhancement ratio and relative biological effectiveness for combined irradiations of Chinese hamster cells by neutrons and gamma-rays. Int J Radiat Biol Relat Stud Phys Chem Med 25(2):121–127

    Article  CAS  PubMed  Google Scholar 

  83. Thorwarth D, Eschmann SM, Paulsen F, Alber M (2007) Hypoxia dose painting by numbers: a planning study. Int J Radiat Oncol Biol Phys 68(1):291–300

    Article  PubMed  Google Scholar 

  84. Vanderstraeten B, Duthoy W, De Gersem W, De Neve W, Thierens H (2006) [18F]fluoro-deoxy-glucose positron emission tomography ([18F]FDG-PET) voxel intensity-based intensity-modulated radiation therapy (IMRT) for head and neck cancer. Radiother Oncol 79(3):249–258

    Article  CAS  PubMed  Google Scholar 

  85. Madani I, Duprez F, Boterberg T, Van de Wiele C, Bonte K, Deron P, De Gersem W, Coghe M, De Neve W (2011) Maximum tolerated dose in a phase I trial on adaptive dose painting by numbers for head and neck cancer. Radiother Oncol 101(3):351–355. doi:10.1016/j.radonc.2011.06.020

    Article  PubMed  Google Scholar 

  86. Duprez F, De Neve W, De Gersem W, Coghe M, Madani I (2011) Adaptive dose painting by numbers for head-and-neck cancer. Int J Radiat Oncol Biol Phys 80(4):1045–1055. doi:10.1016/j.ijrobp.2010.03.028

    Article  PubMed  Google Scholar 

  87. Berwouts D, Olteanu LA, Duprez F, Vercauteren T, De Gersem W, De Neve W, Van de Wiele C, Madani I (2013) Three-phase adaptive dose-painting-by-numbers for head-and-neck cancer: initial results of the phase I clinical trial. Radiother Oncol 107(3):310–316. doi:10.1016/j.radonc.2013.04.002

    Article  PubMed  Google Scholar 

  88. Duprez F, Berwouts D, Boterberg T, De Gersem W, Olteanu LA, Vercauteren T, De Neve W (2015) Randomised escalation trial with adaptive dose painting by numbers for head and neck cancer: interim analysis. In: ESTRO 35, Barcelona, 2015. p S204

  89. Heukelom J, Hamming O, Bartelink H, Hoebers F, Giralt J, Herlestam T, Verheij M, van den Brekel M, Vogel W, Slevin N, Deutsch E, Sonke JJ, Lambin P, Rasch C (2013) Adaptive and innovative Radiation Treatment FOR improving Cancer treatment outcomE (ARTFORCE); a randomized controlled phase II trial for individualized treatment of head and neck cancer. BMC Cancer 13:84. doi:10.1186/1471-2407-13-84

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. Welz S, Pfannenberg C, Reimold M, Reischl G, Mauz PS, Zips D, Alber M, Belka C, Thorwarth D (2014) Hypoxia dose-escalation with chemo-radiation in head and neck cancer: planned interim analysis of a randomized study. Radiother Oncol 111(Suppl 1):155–156

    Google Scholar 

  91. Welz S, Monnich D, Pfannenberg C, Nikolaou K, Reimold M, La Fougere C, Reischl G, Mauz PS, Paulsen F, Alber M, Belka C, Zips D, Thorwarth D (2017) Prognostic value of dynamic hypoxia PET in head and neck cancer: results from a planned interim analysis of a randomized phase II hypoxia-image guided dose escalation trial. Radiother Oncol. doi:10.1016/j.radonc.2017.04.004

    PubMed  Google Scholar 

  92. Löck S, Perrin R, Seidlitz A, Bandurska-Luque A, Zschaeck S, Zöphel K, Krause M, Steinbach J, Kotzerke J, Zips D, Troost EGC, Baumann M (2017) Prospective validation of the prognostic value of sequential FMISO-PET imaging in locally advanced head-and-neck cancer patients undergoing primary radiochemotherapy. Radiother Oncol (2017) (in press)

  93. Zips D, Zophel K, Abolmaali N, Perrin R, Abramyuk A, Haase R, Appold S, Steinbach J, Kotzerke J, Baumann M (2012) Exploratory prospective trial of hypoxia-specific PET imaging during radiochemotherapy in patients with locally advanced head-and-neck cancer. Radiother Oncol 105(1):21–28. doi:10.1016/j.radonc.2012.08.019

    Article  PubMed  Google Scholar 

  94. van Elmpt W, De Ruysscher D, van der Salm A, Lakeman A, van der Stoep J, Emans D, Damen E, Öllers M, Sonke J-J, Belderbos J (2012) The PET-boost randomised phase II dose-escalation trial in non-small cell lung cancer. Radiother Oncol 104(1):67–71

    Article  PubMed  Google Scholar 

  95. Lips IM, van der Heide UA, Haustermans K, van Lin EN, Pos F, Franken SP, Kotte AN, van Gils CH, van Vulpen M (2011) Single blind randomized phase III trial to investigate the benefit of a focal lesion ablative microboost in prostate cancer (FLAME-trial): study protocol for a randomized controlled trial. Trials 12:255. doi:10.1186/1745-6215-12-255

    Article  PubMed Central  PubMed  Google Scholar 

  96. van der Heide UA, Houweling AC, Groenendaal G, Beets-Tan RG, Lambin P (2012) Functional MRI for radiotherapy dose painting. Magn Reson Imaging 30(9):1216–1223. doi:10.1016/j.mri.2012.04.010

    Article  PubMed Central  PubMed  Google Scholar 

  97. Jurgenliemk-Schulz IM, Tersteeg RJ, Roesink JM, Bijmolt S, Nomden CN, Moerland MA, de Leeuw AA (2009) MRI-guided treatment-planning optimisation in intracavitary or combined intracavitary/interstitial PDR brachytherapy using tandem ovoid applicators in locally advanced cervical cancer. Radiother Oncol 93(2):322–330. doi:10.1016/j.radonc.2009.08.014

    Article  PubMed  Google Scholar 

  98. Kirchheiner K, Potter R, Tanderup K, Lindegaard JC, Haie-Meder C, Petric P, Mahantshetty U, Jurgenliemk-Schulz IM, Rai B, Cooper R, Dorr W, Nout RA, Group EC (2016) Health-related quality of life in locally advanced cervical cancer patients after definitive chemoradiation therapy including image guided adaptive brachytherapy: an analysis from the EMBRACE study. Int J Radiat Oncol Biol Phys 94(5):1088–1098. doi:10.1016/j.ijrobp.2015.12.363

    Article  PubMed  Google Scholar 

  99. Kirchheiner K, Nout RA, Lindegaard JC, Haie-Meder C, Mahantshetty U, Segedin B, Jurgenliemk-Schulz IM, Hoskin PJ, Rai B, Dorr W, Kirisits C, Bentzen SM, Potter R, Tanderup K, Group EC (2016) Dose-effect relationship and risk factors for vaginal stenosis after definitive radio(chemo)therapy with image-guided brachytherapy for locally advanced cervical cancer in the EMBRACE study. Radiother Oncol 118(1):160–166. doi:10.1016/j.radonc.2015.12.025

    Article  PubMed  Google Scholar 

  100. Mazeron R, Fokdal LU, Kirchheiner K, Georg P, Jastaniyah N, Segedin B, Mahantshetty U, Hoskin P, Jurgenliemk-Schulz I, Kirisits C, Lindegaard JC, Dorr W, Haie-Meder C, Tanderup K, Potter R, group Ec (2016) Dose-volume effect relationships for late rectal morbidity in patients treated with chemoradiation and MRI-guided adaptive brachytherapy for locally advanced cervical cancer: results from the prospective multicenter EMBRACE study. Radiother Oncol 120(3):412–419. doi:10.1016/j.radonc.2016.06.006

    Article  PubMed  Google Scholar 

  101. Trani D, Yaromina A, Dubois L, Granzier M, Peeters SG, Biemans R, Nalbantov G, Lieuwes N, Reniers B, Troost EE, Verhaegen F, Lambin P (2015) Preclinical assessment of efficacy of radiation dose painting based on intratumoral FDG-PET uptake. Clin Cancer Res 21(24):5511–5518. doi:10.1158/1078-0432.CCR-15-0290

    Article  CAS  PubMed  Google Scholar 

  102. Vera P, Thureau S, Chaumet-Riffaud P, Modzelewski R, Bohn P, Vermandel M, Hapdey S, Pallardy A, Mahe MA, Lacombe M, Boisselier P, Guillemard S, Olivier P, Beckendorf V, Salem N, Charrier N, Chajon E, Devillers A, Aide N, Danhier S, Denis F, Muratet JP, Martin E, Berriolo-Riedinger A, Kolesnikov-Gauthier H, Dansin E, Massabeau C, Courbon F, Farcy-Jacquet MP, Kotzki PO, Houzard C, Mornex F, Vervueren L, Paumier A, Fernandez P, Salaun M, Dubray B (2017) Phase II study of a radiotherapy total dose increase in hypoxic lesions identified by F-miso PET/CT in patients with non-small cell lung carcinoma [RTEP5 study]. J Nucl Med. doi:10.2967/jnumed.116.188367

    Google Scholar 

  103. Zschaeck S, Haase R, Abolmaali N, Perrin R, Stutzer K, Appold S, Steinbach J, Kotzerke J, Zips D, Richter C, Gudziol V, Krause M, Zophel K, Baumann M (2015) Spatial distribution of FMISO in head and neck squamous cell carcinomas during radio-chemotherapy and its correlation to pattern of failure. Acta Oncol 54(9):1355–1363. doi:10.3109/0284186X.2015.1074720

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

EGCT: literature search, literature review , writing, editing, and content planning. LK: literature search and writing. AY: literature search and writing. MK: literature search, literature review, writing, and editing

Corresponding author

Correspondence to Esther G. C. Troost.

Ethics declarations

Funding

Not applicable.

Conflict of interest

None of the authors has a conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Troost, E.G.C., Koi, L., Yaromina, A. et al. Therapeutic options to overcome tumor hypoxia in radiation oncology. Clin Transl Imaging 5, 455–464 (2017). https://doi.org/10.1007/s40336-017-0247-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40336-017-0247-6

Keywords

Navigation