Skip to main content

Advertisement

Log in

PET/MRI in gynecological tumors

  • Review Article
  • Published:
Clinical and Translational Imaging Aims and scope Submit manuscript

Abstract

The diagnostic approach to gynecological tumors includes anatomical and molecular imaging methods, representing a strong support for clinicians to define tumor extension, to plan the best treatment strategy and patient management. The possibility of combining morphological and functional information in a single examination, using hybrid positron emission tomography/magnetic resonance imaging (PET/MRI) technique, represents a very promising tool in the different settings of gynaecologic tumors. In the present review, the current literature and potential clinical applications of PET/MRI in the most common types of gynecological tumors are discussed. The role of PET/MRI is in staging, restaging and after treatment of gynecological tumors is presented, focusing on cervical, endometrial and ovarian cancer. Moreover, the diagnostic accuracy of PET/MRI and the correlation between quantitative parameters (standardized uptake value and apparent diffusion coefficient) of PET/MRI hybrid systems are briefly reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kitajima K et al (2013) Value of fusion of PET and MRI for staging of endometrial cancer: comparison with (1)(8)F-FDG contrast-enhanced PET/CT and dynamic contrast-enhanced pelvic MRI. Eur J Radiol 82(10):1672–1676

    Article  PubMed  Google Scholar 

  2. Hynninen J et al (2013) A prospective comparison of integrated FDG-PET/contrast-enhanced CT and contrast-enhanced CT for pretreatment imaging of advanced epithelial ovarian cancer. Gynecol Oncol 131(2):389–394

    Article  PubMed  Google Scholar 

  3. Sala E et al (2010) The role of dynamic contrast-enhanced and diffusion weighted magnetic resonance imaging in the female pelvis. Eur J Radiol 76(3):367–385

    Article  PubMed  Google Scholar 

  4. Dauwen H et al (2013) PET/CT in the staging of patients with a pelvic mass suspicious for ovarian cancer. Gynecol Oncol 131(3):694–700

    Article  CAS  PubMed  Google Scholar 

  5. Picchio M et al (2010) High-grade endometrial cancer: value of [(18)F]FDG PET/CT in preoperative staging. Nucl Med Commun 31(6):506–512

    PubMed  Google Scholar 

  6. Amit A, Person O, Keidar Z (2013) FDG PET/CT in monitoring response to treatment in gynecological malignancies. Curr Opin Obstet Gynecol 25(1):17–22

    Article  PubMed  Google Scholar 

  7. Spencer JA et al (2010) ESUR guidelines for MR imaging of the sonographically indeterminate adnexal mass: an algorithmic approach. Eur Radiol 20(1):25–35

    Article  PubMed  Google Scholar 

  8. Chung HH et al (2010) Role of magnetic resonance imaging and positron emission tomography/computed tomography in preoperative lymph node detection of uterine cervical cancer. Am J Obstet Gynecol 203(2):156 (e1–5)

    Article  PubMed  Google Scholar 

  9. Picchio M, Ratib O (2013) PET/MRI. Clin Transl Imaging 1:3–4

    Article  Google Scholar 

  10. Ratib O (2013) PET/MRI: a new era in multimodality imaging. Clin Transl Imaging 1:5–10

    Article  Google Scholar 

  11. Pace L et al (2013) Whole-body PET/MRI in oncology: current status and clinical applications. Clin Transl Imaging 1(1):31–44

    Article  Google Scholar 

  12. Ratib O, Beyer T (2011) Whole-body hybrid PET/MRI: ready for clinical use? Eur J Nucl Med Mol Imaging 38(6):992–995

    Article  PubMed  Google Scholar 

  13. Pace L et al (2014) Comparison of whole-body PET/CT and PET/MRI in breast cancer patients: lesion detection and quantitation of 18F-deoxyglucose uptake in lesions and in normal organ tissues. Eur J Radiol 83(2):289–296

    Article  PubMed  Google Scholar 

  14. Picchio M et al (2015) Imaging biomarkers in prostate cancer: role of PET/CT and MRI. Eur J Nucl Med Mol Imaging 42(4):644–655

    Article  CAS  PubMed  Google Scholar 

  15. Barbosa FG, von Schulthess G, Veit-Haibach P (2015) Workflow in simultaneous PET/MRI. Semin Nucl Med 45(4):332–344

    Article  Google Scholar 

  16. Queiroz MA et al (2015) PET/MRI and PET/CT in advanced gynaecological tumours: initial experience and comparison. Eur Radiol 25(8):2222–2230

    Article  PubMed  Google Scholar 

  17. Rockall AG et al (2012) The role of FDG-PET/CT in gynaecological cancers. Cancer Imaging Off Publ Int Cancer Imaging Soc 12:49–65

    Google Scholar 

  18. Grueneisen J et al (2014) Simultaneous positron emission tomography/magnetic resonance imaging for whole-body staging in patients with recurrent gynecological malignancies of the pelvis: a comparison to whole-body magnetic resonance imaging alone. Invest Radiol 49(12):808–815

    Article  PubMed  Google Scholar 

  19. Society AC (2014) Cancer facts & figures 2014. American Cancer Society, Atlanta

    Google Scholar 

  20. Pecorelli S (2009) Revised FIGO staging for carcinoma of the vulva, cervix, and endometrium. Int J Gynaecol Obstet Off Organ Int Fed Gynaecol Obstet 105(2):103–104

    Article  Google Scholar 

  21. Koh WJ et al (2013) Cervical cancer. J Natl Compr Cancer Netw JNCCN 11(3):320–343

    CAS  PubMed  Google Scholar 

  22. Mitchell DG et al (2006) Early invasive cervical cancer: tumor delineation by magnetic resonance imaging, computed tomography, and clinical examination, verified by pathologic results, in the ACRIN 6651/GOG 183 Intergroup Study. J Clin Oncol Off J Am Soc Clin Oncol 24(36):5687–5694

    Article  Google Scholar 

  23. Lakhman Y et al (2013) Stage IB1 cervical cancer: role of preoperative MR imaging in selection of patients for fertility-sparing radical trachelectomy. Radiology 269(1):149–158

    Article  PubMed  Google Scholar 

  24. Signorelli M et al (2011) Preoperative staging of cervical cancer: is 18-FDG-PET/CT really effective in patients with early stage disease? Gynecol Oncol 123(2):236–240

    Article  PubMed  Google Scholar 

  25. Fleming ND et al (2015) Significance of lymph node ratio in defining risk category in node-positive early stage cervical cancer. Gynecol Oncol 136(1):48–53

    Article  PubMed  PubMed Central  Google Scholar 

  26. Selman TJ et al (2008) Diagnostic accuracy of tests for lymph node status in primary cervical cancer: a systematic review and meta-analysis. CMAJ Can Med Assoc J journal de l’Association medicale canadienne 178(7):855–862

    Article  Google Scholar 

  27. Yildirim Y et al (2008) Integrated PET/CT for the evaluation of para-aortic nodal metastasis in locally advanced cervical cancer patients with negative conventional CT findings. Gynecol Oncol 108(1):154–159

    Article  CAS  PubMed  Google Scholar 

  28. Havrilesky LJ et al (2005) FDG-PET for management of cervical and ovarian cancer. Gynecol Oncol 97(1):183–191

    Article  PubMed  Google Scholar 

  29. Choi HJ et al (2006) Comparison of the accuracy of magnetic resonance imaging and positron emission tomography/computed tomography in the presurgical detection of lymph node metastases in patients with uterine cervical carcinoma: a prospective study. Cancer 106(4):914–922

    Article  PubMed  Google Scholar 

  30. Choi HJ et al (2010) Diagnostic performance of computer tomography, magnetic resonance imaging, and positron emission tomography or positron emission tomography/computer tomography for detection of metastatic lymph nodes in patients with cervical cancer: meta-analysis. Cancer Sci 101(6):1471–1479

    Article  CAS  PubMed  Google Scholar 

  31. Kitajima K et al (2014) Fusion of PET and MRI for staging of uterine cervical cancer: comparison with contrast-enhanced (18)F-FDG PET/CT and pelvic MRI. Clin Imaging 38(4):464–469

    Article  PubMed  Google Scholar 

  32. Grueneisen J et al (2015) Integrated PET/MRI for whole-body staging of patients with primary cervical cancer: preliminary results. Eur J Nucl Med Mol Imaging 42(12):1814–1824

    Article  PubMed  Google Scholar 

  33. Kim SK et al (2009) Additional value of MR/PET fusion compared with PET/CT in the detection of lymph node metastases in cervical cancer patients. Eur J Cancer 45(12):2103–2109

    Article  PubMed  Google Scholar 

  34. Sun H et al (2014) Anatomical and functional volume concordance between FDG PET, and T2 and diffusion-weighted MRI for cervical cancer: a hybrid PET/MR study. Eur J Nucl Med Mol Imaging 41(5):898–905

    Article  PubMed  Google Scholar 

  35. Grueneisen J et al (2014) Correlation of standardized uptake value and apparent diffusion coefficient in integrated whole-body PET/MRI of primary and recurrent cervical cancer. PLoS One 9(5):e96751

    Article  PubMed  PubMed Central  Google Scholar 

  36. Brandmaier P et al (2015) Simultaneous [18F]FDG-PET/MRI: correlation of apparent diffusion coefficient (ADC) and standardized uptake value (SUV) in primary and recurrent cervical cancer. PLoS One 10(11):e0141684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dyk P et al (2014) Cervical gross tumor volume dose predicts local control using magnetic resonance imaging/diffusion-weighted imaging-guided high-dose-rate and positron emission tomography/computed tomography-guided intensity modulated radiation therapy. Int J Radiat Oncol Biol Phys 90(4):794–801

    Article  PubMed  Google Scholar 

  38. Beriwal S et al (2011) Three-dimensional high dose rate intracavitary image-guided brachytherapy for the treatment of cervical cancer using a hybrid magnetic resonance imaging/computed tomography approach: feasibility and early results. Clin Oncol 23(10):685–690

    Article  CAS  Google Scholar 

  39. Lai CH et al (2014) Molecular imaging in the management of gynecologic malignancies. Gynecol Oncol 135(1):156–162

    Article  PubMed  Google Scholar 

  40. Zhang S et al (2014) Comparison of tumor volume between PET and MRI in cervical cancer with hybrid PET/MR. Int J Gynecol Cancer Off J Int Gynecol Cancer Soc 24(4):744–750

    Article  Google Scholar 

  41. Tewari D et al (2005) Gene expression profiling of in vitro radiation resistance in cervical carcinoma: a feasibility study. Gynecol Oncol 99(1):84–91

    Article  CAS  PubMed  Google Scholar 

  42. Chu Y et al (2014) Diagnostic value of 18F-FDG-PET or PET-CT in recurrent cervical cancer: a systematic review and meta-analysis. Nucl Med Commun 35(2):144–150

    Article  PubMed  Google Scholar 

  43. Siva S et al (2011) Impact of post-therapy positron emission tomography on prognostic stratification and surveillance after chemoradiotherapy for cervical cancer. Cancer 117(17):3981–3988

    Article  PubMed  Google Scholar 

  44. Zhang S et al (2016) Accuracy of PET/MR image coregistration of cervical lesions. Nucl Med Commun. doi:10.1097/MNM.0000000000000482

  45. Zhang S et al (2014) Defining PET tumor volume in cervical cancer with hybrid PET/MRI: a comparative study. Nucl Med Commun 35(7):712–719

    Article  PubMed  Google Scholar 

  46. Carter J, Pather S (2006) An overview of uterine cancer and its management. Expert Rev Anticancer Ther 6(1):33–42

    Article  PubMed  Google Scholar 

  47. Bagade S et al (2015) PET/MRI evaluation of gynecologic malignancies and prostate cancer. Semin Nucl Med 45(4):293–303

    Article  PubMed  Google Scholar 

  48. Beddy P et al (2012) FIGO staging system for endometrial cancer: added benefits of MR imaging. Radiogr Rev Publ Radiol Soc N Am Inc 32(1):241–254

    Google Scholar 

  49. Kitajima K et al (2008) Accuracy of 18F-FDG PET/CT in detecting pelvic and paraaortic lymph node metastasis in patients with endometrial cancer. AJR Am J Roentgenol 190(6):1652–1658

    Article  PubMed  Google Scholar 

  50. Horowitz NS et al (2004) Prospective evaluation of FDG-PET for detecting pelvic and para-aortic lymph node metastasis in uterine corpus cancer. Gynecol Oncol 95(3):546–551

    Article  PubMed  Google Scholar 

  51. Pilka R et al (2004) Preoperative detection of lymph nodes by means of computer tomography in patients with endometrial carcinoma. Ceska gynekologie/Ceska lekarska spolecnost J Ev Purkyne. 69(3):237–239

    CAS  PubMed  Google Scholar 

  52. Signorelli M et al (2009) Role of the integrated FDG PET/CT in the surgical management of patients with high risk clinical early stage endometrial cancer: detection of pelvic nodal metastases. Gynecol Oncol 115(2):231–235

    Article  PubMed  Google Scholar 

  53. Shih IL et al (2015) Standardized uptake value and apparent diffusion coefficient of endometrial cancer evaluated with integrated whole-body PET/MR: correlation with pathological prognostic factors. J Magn Reson Imaging 42(6):1723–1732

    Article  PubMed  Google Scholar 

  54. Sankaranarayanan R, Ferlay J (2006) Worldwide burden of gynaecological cancer: the size of the problem. Best Pract Res Clin Obstet Gynaecol 20(2):207–225

    Article  CAS  PubMed  Google Scholar 

  55. Lee SI, Catalano OA, Dehdashti F (2015) Evaluation of gynecologic cancer with MR imaging, 18F-FDG PET/CT, and PET/MR imaging. J Nucl Med Off Publ Soc Nucl Med 56(3):436–443

    Google Scholar 

  56. Stuart GC et al (2011) 2010 Gynecologic Cancer InterGroup (GCIG) consensus statement on clinical trials in ovarian cancer: report from the fourth ovarian cancer consensus conference. Int J Gynecol Cancer Off J Int Gynecol Cancer Soc 21(4):750–755

    Article  Google Scholar 

  57. Fischerova D, Burgetova A (2014) Imaging techniques for the evaluation of ovarian cancer. Best Pract Res Clin Obstet Gynaecol 28(5):697–720

    Article  PubMed  Google Scholar 

  58. Alt CD et al (2011) Imaging of female pelvic malignancies regarding MRI, CT, and PET/CT: part 2. Strahlentherapie und Onkologie Organ der Deutschen Rontgengesellschaft 187(11):705–714

    Article  Google Scholar 

  59. Kyriazi S, Kaye SB, deSouza NM (2010) Imaging ovarian cancer and peritoneal metastases—current and emerging techniques. Nature reviews. Clin Oncol 7(7):381–393

    Google Scholar 

  60. Fiaschetti V et al (2011) MR-PET fusion imaging in evaluating adnexal lesions: a preliminary study. Radiol Med (Torino) 116(8):1288–1302

    Article  CAS  Google Scholar 

  61. Nam EJ et al (2010) Diagnosis and staging of primary ovarian cancer: correlation between PET/CT, Doppler US, and CT or MRI. Gynecol Oncol 116(3):389–394

    Article  PubMed  Google Scholar 

  62. Schwenzer NF et al (2014) Measurement of apparent diffusion coefficient with simultaneous MR/positron emission tomography in patients with peritoneal carcinomatosis: comparison with 18F-FDG-PET. J Magn Reson Imaging JMRI 40(5):1121–1128

    Article  PubMed  Google Scholar 

  63. Kim CK et al (2007) Detection of recurrent ovarian cancer at MRI: comparison with integrated PET/CT. J Comput Assist Tomogr 31(6):868–875

    Article  PubMed  Google Scholar 

  64. Michielsen K et al (2014) Whole-body MRI with diffusion-weighted sequence for staging of patients with suspected ovarian cancer: a clinical feasibility study in comparison to CT and FDG-PET/CT. Eur Radiol 24(4):889–901

    Article  PubMed  Google Scholar 

  65. Beiderwellen K et al (2015) [(18)F]FDG PET/MRI vs. PET/CT for whole-body staging in patients with recurrent malignancies of the female pelvis: initial results. Eur J Nucl Med Mol Imaging 42(1):56–65

    Article  CAS  PubMed  Google Scholar 

  66. Nakajo K et al (2010) Diagnostic performance of fluorodeoxyglucose positron emission tomography/magnetic resonance imaging fusion images of gynecological malignant tumors: comparison with positron emission tomography/computed tomography. Jpn J Radiol 28(2):95–100

    Article  PubMed  Google Scholar 

  67. Grueneisen J et al (2014) Diagnostic value of diffusion-weighted imaging in simultaneous 18F-FDG PET/MR imaging for whole-body staging of women with pelvic malignancies. J Nucl Med Off Publ Soc Nucl Med 55(12):1930–1935

    CAS  Google Scholar 

  68. Grueneisen J et al (2015) Implementation of FAST-PET/MRI for whole-body staging of female patients with recurrent pelvic malignancies: a comparison to PET/CT. Eur J Radiol 84(11):2097–2102

    Article  PubMed  Google Scholar 

  69. Kitajima K et al (2014) Value of fusion of PET and MRI in the detection of intra-pelvic recurrence of gynecological tumor: comparison with 18F-FDG contrast-enhanced PET/CT and pelvic MRI. Ann Nucl Med 28(1):25–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Vargas HA et al (2013) Magnetic resonance imaging/positron emission tomography provides a roadmap for surgical planning and serves as a predictive biomarker in patients with recurrent gynecological cancers undergoing pelvic exenteration. Int J Gynecol Cancer Off J Int Gynecol Cancer Soc 23(8):1512–1519

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Mapelli.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The present manuscript analyzed the published literature on the role of PET/MRI in gynecological tumors and no study on human subjects have been directly performed by any of the authors to complete the manuscript. Therefore authors declare that this article does not contain any studies with human or animal subjects performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mapelli, P., Fallanca, F., Incerti, E. et al. PET/MRI in gynecological tumors. Clin Transl Imaging 4, 211–220 (2016). https://doi.org/10.1007/s40336-016-0174-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40336-016-0174-y

Keywords

Navigation