Skip to main content

Spatiotemporal variations of evapotranspiration and reference crop water requirement over 1957–2016 in Iran based on CRU TS gridded dataset

Abstract

Agriculture needs to produce more food to feed the growing population in the 21st century. It makes the reference crop water requirement (WREQ) a major challenge especially in regions with limited water and high water demand. Iran, with large climatic variability, is experiencing a serious water crisis due to limited water resources and inefficient agriculture. In order to overcome the issue of uneven distribution of weather stations, gridded Climatic Research Unit (CRU) data was applied to analyze the changes in potential evapotranspiration (PET), effective precipitation (EFFPRE) and WREQ. Validation of data using in situ observation showed an acceptable performance of CRU in Iran. Changes in PET, EFFPRE and WREQ were analyzed in two 30-a periods 1957–1986 and 1987–2016. Comparing two periods showed an increase in PET and WREQ in regions extended from the southwest to northeast and a decrease in the southeast, more significant in summer and spring. However, EFFPRE decreased in the southeast, northeast, and northwest, especially in winter and spring. Analysis of annual trends revealed an upward trend in PET (14.32 mm/decade) and WREQ (25.50 mm/decade), but a downward trend in EFFPRE (−11.8 mm/decade) over the second period. Changes in PET, EFFPRE and WREQ in winter have the impact on the annual trend. Among climate variables, WREQ showed a significant correlation (r=0.59) with minimum temperature. The increase in WREQ and decrease in EFFPRE would exacerbate the agricultural water crisis in Iran. With all changes in PET and WREQ, immediate actions are needed to address the challenges in agriculture and adapt to the changing climate.

This is a preview of subscription content, access via your institution.

References

  • Abbaspour K C, Faramarzi M, Ghasemi S S, et al. 2009. Assessing the impact of climate change on water resources in Iran. Water resources research, 45(10), doi: https://doi.org/10.1029/2008WR007615

  • Allen R G, Pereira L S, Raes D, et al. 1998. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Rome: Food and Agriculture Organization of the United Nations. http://www.fao.org/docrep/X0490E/X0490E00.htm

    Google Scholar 

  • Bandyopadhyay A, Bhadra A, Raghuwanshi N S, et al. 2009. Temporal trends in estimates of reference evapotranspiration over India. Journal of Hydrologic Engineering, 14(5): 508–515.

    Article  Google Scholar 

  • Beyazgül M, Kayam Y, Engelsman F. 2000. Estimation methods for crop water requirements in the Gediz Basin of western Turkey. Journal of Hydrology, 229(1–2): 19–26.

    Article  Google Scholar 

  • Bouwer L M, Biggs T W, Aerts J C J H. 2008. Estimates of spatial variation in evaporation using satellite-derived surface temperature and a water balance model. Hydrological Processes, 22(5): 670–682.

    Article  Google Scholar 

  • Brouwer C, Heibloem M. 1986. Irrigation Water Management: Irrigation Water Needs. Rome: Food and Agriculture Organization of the United Nations, 102.

    Google Scholar 

  • Burn D H, Hesch N M. 2007. Trends in evaporation for the Canadian Prairies. Journal of Hydrology, 336(1–2): 61–73.

    Article  Google Scholar 

  • Chattopadhyay N, Hulme M. 1997. Evaporation and potential evapotranspiration in India under conditions of recent and future climate change. Agricultural and Forest Meteorology, 87(1): 55–73.

    Article  Google Scholar 

  • Dai A. 2011. Drought under global warming: a review. Wiley Interdisciplinary Reviews: Climate Change, 2(1): 45–65.

    Google Scholar 

  • Dastane N G. 1974. Effective Rainfall in Irrigated Agriculture. Rome: Food and Agriculture Organization of the United Nations, 62.

    Google Scholar 

  • Dinpashoh Y, Jhajharia D, Fakheri-Fard A, et al. 2011. Trends in reference crop evapotranspiration over Iran. Journal of Hydrology, 399(3–4): 422–433.

    Article  Google Scholar 

  • Entekhabi D, Reichle R H, Koster R D, et al. 2010. Performance metrics for soil moisture retrievals and application requirements. Journal of Hydrometeorology, 11(3): 832–840.

    Article  Google Scholar 

  • Espadafor M, Lorite I J, Gavilán P, et al. 2011. An analysis of the tendency of reference evapotranspiration estimates and other climate variables during the last 45 years in Southern Spain. Agricultural Water Management, 98(6): 1045–1061.

    Article  Google Scholar 

  • Evans J, Geerken R. 2004. Discrimination between climate and human-induced dryland degradation. Journal of Arid Environments, 57(4): 535–554.

    Article  Google Scholar 

  • Eyshi Rezaei E, Webber H, Gaiser T, et al. 2015. Heat stress in cereals: Mechanisms and modelling. European Journal of Agronomy, 64: 98–113.

    Article  Google Scholar 

  • Feng S, Fu Q. 2013. Expansion of global drylands under a warming climate. Atmospheric Chemistry Physics, 13: 14637–14665. https://doi.org/10.5194/acpd-13-14637-2013

    Google Scholar 

  • Fu Q, Feng S. 2014. Responses of terrestrial aridity to global warming. Journal of Geophysical Research: Atmospheres, 119: 7863–7875.

    Google Scholar 

  • Gu G, Adler R F. 2015. Spatial patterns of global precipitation change and variability during 1901–2010. Journal of Climate, 28(11): 4431–4453.

    Article  Google Scholar 

  • Harris I, Jones P D, Osborn T J, et al. 2014. Updated high-resolution grids of monthly climatic observations-the CRU TS3.10 Dataset. International Journal of Climatology, 34(3): 623–642.

    Article  Google Scholar 

  • Hartmann D L, Tank A M K, Rusticucci M, et al. 2013. Observations: Atmosphere and surface. In: Climate change 2013 the physical science basis: Working group I contribution to the fifth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press, 159–254.

    Google Scholar 

  • Hobbins M T, Ramirez J A, Brown T C. 2004. Trends in pan evaporation and actual evapotranspiration across the conterminous U S: paradoxical or complementary? Geophysical Research Letters’ Hydrology and Land Surface Studies, 30(13): L13503, doi: https://doi.org/10.1029/2004GL019846.

    Google Scholar 

  • Hosseinzadeh T P, Shifteh Some’e B, Sobhan Ardakani S. 2013. Time trend and change point of reference evapotranspiration over Iran. Theoretical and Applied Climatology, 116(3–4): 639–647.

    Google Scholar 

  • Irmak S, Kabenge I, Skaggs K E, et al. 2012. Trend and magnitude of changes in climate variables and reference evapotranspiration over 116-yr period in the Platte River Basin, central Nebraska-USA. Journal of Hydrology, 420–421: 228–244.

    Article  Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change). 2014. Climate Change 2013: The Physical Science Basis. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, doi: https://doi.org/10.1017/CBO9781107415324.

  • Jung M, Reichstein M, Ciais P, et al. 2010. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature, 467: 951–954.

    Article  Google Scholar 

  • Kendall M G. 1975. Rank Correlation Methods. London: Griffin, 160.

    Google Scholar 

  • Karamouz M, Torabi S, Araghinejad S. 2004. Analysis of hydrologic and agricultural droughts in central part of Iran. Journal of Hydrologic Engineering, 9: 402–414.

    Article  Google Scholar 

  • Kashani M H, Ghorbani M A, Dinpashoh Y, et al. 2016. Integration of Volterra model with artificial neural networks for rainfall-runoff simulation in forested catchment of northern Iran. Journal of Hydrology, 540: 340–354.

    Article  Google Scholar 

  • Keshavarz A, Ashrafi S, Hydari N, et al. 2005. Water allocation and pricing in agriculture of Iran. In: National Research Council Committee on US-Iranian Workshop on Water Conservation and Recycling. Water Conservation, Reuse, and Recycling: Proceeding of an Iranian American Workshop. Washington: National Academies Press, 153–172.

    Google Scholar 

  • Khalili K, Tahoudi M N, Mirabbasi R, et al. 2016. Investigation of spatial and temporal variability of precipitation in Iran over the last half century. Stochastic Environmental Research and Risk Assessment, 30(4): 1205–1221.

    Article  Google Scholar 

  • Liang L, Li L, Liu Q. 2010. Temporal variation of reference evapotranspiration during 1961–2005 in the Taoer River basin of Northeast China. Agricultural and Forest Meteorology, 150(2): 298–306.

    Article  Google Scholar 

  • Lobell D B, Hammer G L, Chenu K, et al. 2015. The shifting influence of drought and heat stress for crops in northeast Australia. Global Change Biology, 21(11): 4115–4127.

    Article  Google Scholar 

  • Madani K. 2014. Water management in Iran: what is causing the looming crisis? Journal of Environmental Studies and Sciences, 4(4): 315–328.

    Article  Google Scholar 

  • Madhu S, Kumar T V L, Barbosa H. 2015. Trend analysis of evapotranspiration and its response to droughts over India. Theor Appl Climatol, 121: 41–51.

    Article  Google Scholar 

  • Mann H B. 1945. Nonparametric tests against trend. Econometrica: Journal of the Econometric Society, 245–259.

  • McCabe G J, Wolock D M. 2015. Increasing Northern Hemisphere water deficit. Climatic Change, 132: 237–249.

    Article  Google Scholar 

  • Miri M, Azizi G, Khoshakhlagh F, et al. 2016. Evaluation statistically of temperature and precipitation datasets with observed data in Iran. Iranian Journal of Watershed Management Science and Engineering, 10(35): 40–50.

    Google Scholar 

  • Nattagh N. 1986. Agriculture and regional development in Iran. Outwell: Middle East and North African Studies Press, 112.

    Google Scholar 

  • Oki T, Kanae S. 2006. Global hydrological cycles and world water resources. Science, 313(5790): 1068–1072.

    Article  Google Scholar 

  • Patwardhan A S, Nieber J L, Johns E L. 1990. Effective rainfall estimation methods. Journal of Irrigation and Drainage Engineering, 116(2): 182–193.

    Article  Google Scholar 

  • Prăvălie R, Bandoc G. 2015. Aridity variability in the last five decades in the Dobrogea region, Romania. Arid Land Research and Management, 29(3): 265–287.

    Article  Google Scholar 

  • Prăvălie R. 2016. Drylands extent and environmental issues. A global approach. Earth-Science Reviews, 161: 259–278.

    Article  Google Scholar 

  • Prăvălie R, Bandoc G. 2019. Cristian Patriche, and Troy Sternberg. Recent changes in global drylands: Evidences from two major aridity databases. Catena, 178: 209–231.

    Article  Google Scholar 

  • Prăvălie R, Piticar A, Roşca B, et al. 2019. Spatio-temporal changes of the climatic water balance in Romania as a response to precipitation and reference evapotranspiration trends during 1961–2013. Catena, 172: 295–312.

    Article  Google Scholar 

  • Prăvălie R, Sîrodoev I, Patriche C, et al. 2020. The impact of climate change on agricultural productivity in Romania. A country-scale assessment based on the relationship between climatic water balance and maize yields in recent decades. Agricultural Systems, 179: 102767, doi: https://doi.org/10.1016/j.agsy.2019.102767.

    Article  Google Scholar 

  • Rahimi J, Bazrafshan J, Khalili A. 2013. A comparative study on empirical methods for estimating effective rainfall for rainfed wheat crop in different climates of Iran. Physical Geography Research Quarterly, 45(3): 6–8.

    Google Scholar 

  • Raziei T, Daneshkar Arasteh P, Saghfian B. 2005. Annual rainfall trend in arid and semi-arid regions of Iran. In: ICID 21st European Regional Conference. Frankfurt (Oder) and Slubice-Germany and Poland.

  • Raziei T, Daryabari J, Bordi I, et al. 2014a. Spatial patterns and temporal trends of precipitation in Iran. Theoretical and Applied Climatology, 115(3–4): 531–540.

    Article  Google Scholar 

  • Raziei T, Mofidi A, Santos J A, et al. 2012. Spatial patterns and regimes of daily precipitation in Iran in relation to large-scale atmospheric circulation. International Journal of Climatology, 32(8): 1226–1237.

    Article  Google Scholar 

  • Roderick M L, Greve P, Farquhar G D. 2015. On the assessment of aridity with changes in atmospheric CO2. Water Resources Research, 51(7): 5450–5463.

    Article  Google Scholar 

  • Saboohi R, Soltani S, Khodagholi M. 2012. Trend analysis of temperature parameters in Iran. Theoretical and Applied Climatology, 109(3–4): 529–547.

    Article  Google Scholar 

  • Sadeghi S H, Peters T R, Amini M Z, et al. 2015. Novel approach to evaluate the dynamic variation of wind drift and evaporation losses under moving irrigation systems. Biosystems Engineering, 135: 44–53.

    Article  Google Scholar 

  • Sanaee-Jahromi S, Depeweg H, Feyen J. 2000. Water delivery performance in the Doroodzan irrigation scheme, Iran. Irrigation and Drainage Systems, 14: 207–222.

    Article  Google Scholar 

  • Scheff J, Frierson D M. 2014. Scaling potential evapotranspiration with greenhouse warming. Journal of Climate, 27(4): 1539–1558.

    Article  Google Scholar 

  • Seneviratne S I, Corti T, Davin E L, et al. 2010. Investigating soil moisture-climate interactions in a changing climate: A review. Earth-Science Reviews, 99(3–4): 125–161.

    Article  Google Scholar 

  • Shadmani M, Marofi S, Roknian M. 2012. Trend Analysis in Reference Evapotranspiration Using Mann-Kendall and Spearman’s Rho Tests in Arid Regions of Iran. Water Resources Management, 26(1): 211–224.

    Article  Google Scholar 

  • Sheffield J, Wood E F, Roderick M L. 2012. Little change in global drought over the past 60 years. Nature, 491(7424): 435–438.

    Article  Google Scholar 

  • Sherwood S, Huber M. 2010. An adaptability limit to climate change due to heat stress. PNAS, 107(21): 9552–9555.

    Article  Google Scholar 

  • Shi H, Li T, Wei J. 2017. Evaluation of the gridded CRU TS precipitation dataset with the point raingauge records over the Three-River Headwaters Region. Journal of Hydrology, 548: 322–332.

    Article  Google Scholar 

  • Song Z W, Zhang H L, Snyder R L, et al. 2010. Distribution and trends in reference evapotranspiration in the North China Plain. Journal of Irrigation and Drainage Engineering, 136(4): 240–247.

    Article  Google Scholar 

  • Tabari H, Marofi S, Aeini A, et al. 2011. Trend analysis of reference evapotranspiration in the western half of Iran. Agricultural and Forest Meteorology, 151(2): 128–136.

    Article  Google Scholar 

  • Tabari H, Aeini A, Talaee P H, et al. 2012. Spatial distribution and temporal variation of reference evapotranspiration in arid and semi-arid regions of Iran. Hydrological Processes, 26(4): 500–512.

    Article  Google Scholar 

  • Talaee P H, Some’e B S, Ardakani S S. 2014. Time trend and change point of reference evapotranspiration over Iran. Theoretical and Applied Climatology, 116: 639–647.

    Article  Google Scholar 

  • Tavakol A, Rahmani V, Quiring S, et al. 2019. Evaluation analysis of NASA SMAP L3 and L4 and SPoRT-LIS soil moisture data in the United States. Remote Sensing of Environment, 229: 234–246.

    Article  Google Scholar 

  • Thomas A. 2000. Spatial and temporal characteristics of potential evapotranspiration trends over China. International Journal of Climatology, 20(4): 381–396.

    Article  Google Scholar 

  • Trenberth K E, Dai A, van der Schrier G, et al. 2013. Global warming and changes in drought. Nature Climate Change, 4: 17–22.

    Article  Google Scholar 

  • Vicente-Serrano S M, Azorin-Molina C, Sanchez-Lorenzo A, et al. 2014. Sensitivity of reference evapotranspiration to changes in meteorological parameters in Spain (1961–2011). Water Resources Research, 50(11): 8458–8480.

    Article  Google Scholar 

  • Walter M T, Wilks D S, Parlange J, et al. 2004. Increasing evapotranspiration from the conterminous United States. Journal of Hydrometeorology, 5(3): 405–408.

    Article  Google Scholar 

  • Wang Y, Jiang T, Bothe O, et al. 2007. Changes of pan evaporation and reference evapotranspiration in the Yangtze River basin. Theoretical and Applied Climatology, 90(1–2): 13–23.

    Article  Google Scholar 

  • Webber H, Martre P, Asseng S, et al. 2017. Canopy temperature for simulation of heat stress in irrigated wheat in a semi-arid environment: A multi-model comparison. Field Crops Research, 202: 21–35.

    Article  Google Scholar 

  • Webber H, White J W, Kimball B A, et al. 2018. Physical robustness of canopy temperature models for crop heat stress simulation across environments and production conditions. Field Crops Research, 216: 75–88.

    Article  Google Scholar 

  • Wu D, Fang S, Li X, et al. 2019. Spatial-temporal variation in irrigation water requirement for the winter wheat-summer maize rotation system since the 1980s on the North China Plain. Agricultural Water Management, 214: 78–86.

    Article  Google Scholar 

  • Xu C, Gong L, Jiang T, et al. 2006. Analysis of spatial distribution and temporal trend of reference evapotranspiration and pan evaporation in Changjiang (Yangtze River) catchment. Journal of Hydrology, 327(1–2): 81–93.

    Article  Google Scholar 

  • Yue S, Pilon P, Phinney B, et al. 2002. The influence of autocorrelation on the ability to detect trend in hydrological series. Hydrological Processes, 16(9): 1807–1829.

    Article  Google Scholar 

  • Zaninović K, Gajić-Čapka M. 2000. Changes in components of the water balance in the Croatian lowlands. Theoretical and Applied Climatology, 65(1–2): 111–117.

    Google Scholar 

  • Zhang K, Kimball J S, Nemani R R, et al. 2015. Vegetation greening and climate change promote multidecadal rises of global land evapotranspiration. Scientific Reports, 5: 15956, doi: https://doi.org/10.1038/srep15956.

    Article  Google Scholar 

  • Zhang X, Kang S, Zhang L, et al. 2010. Spatial variation of climatology monthly crop reference evapotranspiration and sensitivity coefficients in Shiyang river basin of northwest China. Agricultural Water Management, 97(10): 1506–1516.

    Article  Google Scholar 

  • Zhang Y, Peña-Arancibia J L, McVicar T R, et al. 2016. Multi-decadal trends in global terrestrial evapotranspiration and its components. Scientific Reports, 6: 19124, doi: https://doi.org/10.1038/srep19124.

    Article  Google Scholar 

  • Zhang Y, Liu C, Tang Y, et al. 2007. Trends in pan evaporation and reference and actual evapotranspiration across the Tibetan Plateau. Journal of Geophysical Research, 112(D12): D12110, doi: https://doi.org/10.1029/2006JD008161.

    Article  Google Scholar 

  • Zheng B, Chenu K, Fernanda Dreccer M, et al. 2012. Breeding for the future: what are the potential impacts of future frost and heat events on sowing and flowering time requirements for Australian bread wheat (Triticum aestivium) varieties? Global Change Biology, 18(9): 2899–2914.

    Article  Google Scholar 

  • Zheng B, Chapman S C, Christopher J T, et al. 2015. Frost trends and their estimated impact on yield in the Australian wheatbelt. Journal of Experimental Botany, 66(12): 3611–3623.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadi Ramezani Etedali.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Collins, B., Ramezani Etedali, H., Tavakol, A. et al. Spatiotemporal variations of evapotranspiration and reference crop water requirement over 1957–2016 in Iran based on CRU TS gridded dataset. J. Arid Land 13, 858–878 (2021). https://doi.org/10.1007/s40333-021-0103-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40333-021-0103-4

Keywords

  • evapotranspiration
  • reference crop water requirement
  • effective precipitation
  • trend
  • Iran
  • spatiotemporal change
  • CRU TS data