Skip to main content
Log in

Endophytic bacteria associated with halophyte Seidlitzia rosmarinus Ehrenb. ex Boiss. from saline soil of Uzbekistan and their plant beneficial traits

  • Research article
  • Published:
Journal of Arid Land Aims and scope Submit manuscript

Abstract

Endophytic bacteria of halophytic plants play essential roles in salt stress tolerance. Therefore, an understanding of the true nature of plant—microbe interactions under extreme conditions is essential. The current study aimed to identify cultivable endophytic bacteria associated with the roots and shoots of Seidlitzia rosmarinus Ehrenb. ex Boiss. grown in the salt-affected soil in Uzbekistan and to evaluate their plant beneficial traits related to plant growth stimulation and stress tolerance. Bacteria were isolated from the roots and the shoots of S. rosmarinus using culture-dependent techniques and identified by the 16S rRNA gene. RFLP (Restriction Fragment Length Polymorphism) analysis was conducted to eliminate similar isolates. Results showed that the isolates from the roots of S. rosmarinus belonged to the genera Rothia, Kocuria, Pseudomonas, Staphylococcus, Paenibacillus and Brevibacterium. The bacterial isolates from the shoots of S. rosmarinus belonged to the genera Staphylococcus, Rothia, Stenotrophomonas, Brevibacterium, Halomonas, Planococcus, Planomicrobium and Pseudomonas, which differed from those of the roots. Notably, Staphylococcus, Rothia and Brevibacterium were detected in both roots and shoots, indicating possible migration of some species from roots to shoots. The root-associated bacteria showed higher levels of IAA (indole-3-acetic acid) synthesis compared with those isolated from the shoots, as well as the higher production of ACC (1-aminocyclopropane-1-carboxylate) deaminase. Our findings suggest that halophytic plants are valuable sources for the selection of microbes with a potential to improve plant fitness under saline soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Announ N, Mattei J, Jaoua S, et al. 2004. Multifocal discitis caused by Staphylococcus warneri. Joint Bone Spine, 71(3): 240–242.

    Article  Google Scholar 

  • Bano N, Musarrat J. 2003. Characterization of a new Pseudomonas aeruginosa strain NJ-15 as a potential biocontrol agent. Current Microbiology, 46(5): 324–328.

    Article  Google Scholar 

  • Barigye R, Schaan L, Gibbs P S, et al. 2007. Diagnostic evidence of Staphylococcus warneri as a possible cause of bovine abortion. Journal of Veterinary Diagnostic Investigation, 19(6): 694–696.

    Article  Google Scholar 

  • Bulgarelli D, Schlaeppi K, Spaepen S, et al. 2013. Structure and functions of the bacterial microbiota of plants. Annual Review of Plant Biology, 64: 807–838.

    Article  Google Scholar 

  • Chi F, Shen S H, Cheng H P, et al. 2005. Ascending migration of endophytic rhizobia, from roots to leaves, inside rice plants and assessment of benefits to rice growth physiology. Applied and Environmental Microbiology, 71(11): 7271–7278.

    Article  Google Scholar 

  • Cho S T, Chang H H, Egamberdieva D, et al. 2015. Genome analysis of Pseudomonas fluorescens PCL1751: a rhizobacterium that controls root diseases and alleviates salt stress for its plant host. PLoS ONE, 10(10): e0140231.

    Article  Google Scholar 

  • Chou Y J, Chou J H, Lin K Y, et al. 2008. Rothia terrae sp. nov. isolated from soil in Taiwan. International Journal of Systematic and Evolutionary Microbiology, 58(1): 84–88.

    Article  Google Scholar 

  • Dashti A A, Jadaon M M, Abdulsamad A M, et al. 2009. Heat treatment of bacteria: a simple method of DNA extraction for molecular techniques. Kuwait Medical Journal, 41(2): 117–122.

    Google Scholar 

  • Egamberdieva D, Kamilova F, Validov S, et al. 2008. High incidence of plant growth-stimulating bacteria associated with the rhizosphere of wheat grown in salinated soil in Uzbekistan. Environmental Microbiology, 10(1): 1–9.

    Google Scholar 

  • Egamberdieva D, Kucharova Z, Davranov K, et al. 2011. Bacteria able to control foot and root rot and to promote growth of cucumber in salinated soils. Biology and Fertility of Soils, 47: 197–205.

    Article  Google Scholar 

  • Egamberdieva D, Li L, Lindström K, et al. 2015. A synergistic interaction between salt tolerant Pseudomonas and Mesorhizobium strains improves growth and symbiotic performance of liquorice (Glycyrrhiza uralensis Fish.) under salt stress. Applied Microbiology and Biotechnology, 100: 2829–2841.

    Article  Google Scholar 

  • Egamberdieva D, Li L, Wirth S, et al. 2017. Microbial cooperation in the rhizosphere improves liquorice growth under salt stress. Bioengineered, 8(4): 433–438.

    Article  Google Scholar 

  • Egamberdieva D, Wirth S J, Behrendt U, et al. 2017a. Antimicrobial activity of medicinal plants correlates with the proportion of antagonistic endophytes. Frontiers in Microbiology, 8: 199.

    Google Scholar 

  • Egamberdieva D, Wirth S J, Shurigin V V, et al. 2017b. Endophytic bacteria improve plant growth, symbiotic performance of chickpea (Cicer arietinum L.) and induce suppression of root rot caused by Fusarium solani under salt stress. Frontiers in Microbiology, 8: 1887.

    Article  Google Scholar 

  • Egamberdieva D, Wirth S J, Alqarawi A A, et al. 2017c. Phytohormones and beneficial microbes: essential components for plants to balance stress and fitness. Frontiers in Microbiology, 8: 2104.

    Article  Google Scholar 

  • El Shaer H M. 2010. Halophytes and salt-tolerant plants as potential forage for ruminants in the Near East region. Small Ruminant Research, 91(1): 3–12.

    Article  Google Scholar 

  • Etesami H, Beattie G A. 2017. Plant-microbe interactions in adaptation of agricultural crops to abiotic stress conditions. In: Kumar V, Kumar M, Sharma S, et al. Probiotics and Plant Health. Singapore: Springer, 163–200.

    Chapter  Google Scholar 

  • Etesami H, Beattie G A. 2018. Mining halophytes for plant growth-promoting halotolerant bacteria to enhance the salinity tolerance of non-halophytic crops. Frontiers in Microbiology, 9: 148.

    Article  Google Scholar 

  • Felsenstein J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution, 39(4): 783–791.

    Article  Google Scholar 

  • Flowers T J, Colmer T D. 2015. Plant salt tolerance: Adaptations in halophytes. Annals of Botany, 115(3): 327–331.

    Article  Google Scholar 

  • Glick B R. 2014. Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiological Research, 169(1): 30–39.

    Article  Google Scholar 

  • Grigore M N, Ivanescu L, Toma C. 2014. Halophytes: An Integrative Anatomical Study. New York: Springer, 39–43.

    Google Scholar 

  • Gupta S, Pandey S. 2019. ACC deaminase producing bacteria with multifarious plant growth promoting traits alleviates salinity stress in French bean (Phaseolus vulgaris) plants. Frontiers in Microbiology, 10: 1506.

    Article  Google Scholar 

  • Hadi M R. 2009. Biotechnological potentials of Seidlitzia rosmarinus: A mini review. African Journal of Biotechnology, 8(11): 2429–2431.

    Google Scholar 

  • Hasanuzzaman M, Nahar K, Alam M, et al. 2014. Potential use of halophytes to remediate saline soils. BioMed Research International, ID 589341.

  • Hashem A, Abd Allah E F, Alqarawi A, et al. 2016. The interaction between arbuscular mycorrhizal fungi and endophytic bacteria enhances plant growth of Acacia gerrardii under salt stress. Frontiers in Microbiology, 7: 1089.

    Article  Google Scholar 

  • Jha B, Gontia I, Hartmann A. 2012. The roots of the halophyte Salicornia brachiata are a source of new halotolerant diazotrophic bacteria with plant growth-promoting potential. Plant and Soil, 356: 265–277.

    Article  Google Scholar 

  • Jinneman K C, Wetherington J H, Adams A M, et al. 1996. Differentiation of Cyclospora sp. and Eimeria spp. by using the polymerase chain reaction amplification products and restriction fragment length polymorphisms. Food and Drug Administration Laboratory Information Bulletin LIB no. 4044.

  • Kaplan D, Maymon M, Agapakis C M, et al. 2013. A survey of the microbial community in the rhizosphere of two dominant shrubs of the Negev Desert highlands, Zygophyllum dumosum (Zygophyllaceae) and Atriplex halimus (Amaranthaceae), using cultivation-dependent and cultivation-independent methods. American Journal of Botany, 100: 1713–1725.

    Article  Google Scholar 

  • Kaye J Z, Baross J A. 2000. High incidence of halotolerant bacteria in Pacific hydrothermal-vent and pelagic environments. FEMS Microbiology Ecology, 32(3): 249–260.

    Article  Google Scholar 

  • Kloos W E, Schleifer K H. 1975. Isolation and characterization of staphylococci from human skin II. descriptions of four new species: Staphylococcus warneri, Staphylococcus capitis, Staphylococcus hominis, and Staphylococcus simulans. International Journal of Systematic Bacteriology, 25(1): 62–79.

    Article  Google Scholar 

  • Kurkova E B, Kalinkina L G, Baburina O K, et al. 2002. Responses of Seidlitzia rosmarinus to salt stress. Biology Bulletin of the Russian Academy of Sciences, 29: 221–229.

    Article  Google Scholar 

  • Lane D J. 1991. 16S/23S rRNA Sequencing. In: Stackebrandt E, Goodfellow M. Nucleic Acid Techniques in Bacterial Systematic, New York: John Wiley and Sons, 115–175.

    Google Scholar 

  • Ludwig-Mueller J. 2015. Plants and endophytes: equal partners in secondary metabolite production? Biotechnology Letters, 37: 1325–1334.

    Article  Google Scholar 

  • Luo X, Zhang J, Li D, et al. 2014. Planomicrobium soli sp. nov., isolated from soil. International Journal of Systematic and Evolutionary Microbiology, 64: 2700–2705.

    Article  Google Scholar 

  • Mishra A, Tanna B. 2017. Halophytes: potential resources for salt stress tolerance genes and promoters. Frontiers in Plant Science, 8: 829.

    Article  Google Scholar 

  • Mora-Ruiz M D R, Font-Verdera F, Díaz-Gil C, et al. 2015. Moderate halophilic bacteria colonizing the phylloplane of halophytes of the subfamily Salicornioideae (Amaranthaceae). Systematic and Applied Microbiology, 38(6): 406–416.

    Article  Google Scholar 

  • Mora-Ruiz M D R, Font-Verdera F, Orfila A, et al. 2016. Endophytic microbial diversity of the halophyte Arthrocnemum macrostachyum across plant compartments. FEMS Microbiology Ecology, 92(9): fiw145.

    Article  Google Scholar 

  • Muchate N S, Nikalje G C, Rajurkar N S, et al. 2016. Plant salt stress: adaptive responses, tolerance mechanism and bioengineering for salt tolerance. The Botanical Review, 82: 371–406.

    Article  Google Scholar 

  • Mykytczuk N C, Wilhelm R C, Whyte L G, 2012. Planococcus halocryophilus sp. nov., an extreme sub-zero species from high Arctic permafrost. International Journal of Systematic and Evolutionary Microbiology, 62: 1937–1944.

    Article  Google Scholar 

  • Nanjani S G, Soni H P. 2014. Characterization of an extremely halotolerant Staphylococcus arlettae HPSSN35C isolated from Dwarka Beach, India. Journal of Basic Microbiology, 53(8): 1–8.

    Google Scholar 

  • Nováková D, Sedlácek I, Pantůcek R, et al. 2006. Staphylococcus equorum and Staphylococcus succinus isolated from human clinical specimens. Journal of Medical Microbiology, 55(5): 523–528.

    Article  Google Scholar 

  • Piccoli P, Travaglia C, Cohen A, et al. 2011. An endophytic bacterium isolated from roots of the halophyte Prosopis strombulifera produces ABA, IAA, gibberellins A1 and A3 and jasmonic acid in chemically-defined culture medium. Plant Growth Regulation, 64: 207–210.

    Article  Google Scholar 

  • Ramos P L, van Trappen S, Thompson F L, et al. 2011. Screening for endophytic nitrogen-fixing bacteria in Brazilian sugar cane varieties used in organic farming and description of Stenotrophomonas pavanii sp. nov. International Journal of Systematic and Evolutionary Microbiology, 61(4): 926–931.

    Article  Google Scholar 

  • Rashid S, Charles T C, Glick B R. 2012. Isolation and characterization of new plant growth-promoting bacterial endophytes. Applied Soil Ecology, 61(4): 217–224.

    Article  Google Scholar 

  • Roohi A, Ahmed I, Iqbal M, et al. 2012. Preliminary isolation and characterization of halotolerant and halophilic bacteria from salt mines of Karak. Pakistan Journal of Botany, 44: 365–370.

    Google Scholar 

  • Saitou N, Nei M. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4(4): 406–425.

    Google Scholar 

  • Sgroy V, Cassan F, Masciarelli O, et al. 2009. Isolation and characterization of endophytic plant growth-promoting (PGPB) or stress homeostasis-regulating (PSHB) bacteria associated to the halophyte Prosopis strombulifera. Applied Microbiology and Biotechnology, 85(2): 371–381.

    Article  Google Scholar 

  • Sorty A M, Meena K K, Choudhary K, et al. 2016. Effect of plant growth promoting bacteria associated with halophytic weed (Psoralea corylifolia L.) on germination and seedling growth of wheat under saline conditions. Applied Biochemistry and Biotechnology, 180: 872–882.

    Article  Google Scholar 

  • Surette M A, Sturz A V, Lada R R, et al. 2003. Bacterial endophytes in processing carrots (Daucus carota L. var. sativus): their localization, population density, biodiversity and their effects on plant growth. Plant and Soil, 253: 381–390.

    Article  Google Scholar 

  • Szymańska S, Płociniczak T, Piotrowska-Seget Z, et al. 2016. Metabolic potential and community structure of endophytic and rhizosphere bacteria associated with the roots of the halophyte Aster tripolium L. Microbiological Research, 182: 68–79.

    Article  Google Scholar 

  • Tamura K, Nei M, Kumar S. 2004. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proceedings of the National Academy of Sciences of the United States of America, 101(30): 11030–11035.

    Article  Google Scholar 

  • Tamura K, Stecher G, Peterson D, et al. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30(12): 2725–2729.

    Article  Google Scholar 

  • Toderich K N, Ismail S, Juylova E A, et al. 2008. New approaches for Biosaline Agriculture development, management and conservation of sandy desert ecosystems. In: Chedly A, Munir O, Muhamad A, et al. Biosaline Agriculture and Salinity Tolerance in Plant. Basel: Birkhauser Verlag, 247–264.

    Chapter  Google Scholar 

  • Valverde A, Igual J M, Santa R I, et al. 2005. Preliminary diversity studies of culturable phyllosphere bacteria on chestnut (Castanea sativa). Acta Horticulturae, 693: 263–270.

    Article  Google Scholar 

  • Yoon J H, Kang S S, Lee K C, et al. 2001. Planomicrobium koreense gen. nov., sp. nov., a bacterium isolated from the Korean traditional fermented seafood jeotgal, and transfer of Planococcus okeanokoites (Nakagawa et al., 1996) and Planococcus mcmeekinii (Junge et al., 1998) to the genus Planomicrobium. International Journal of Systematic and Evolutionary Microbiology, 51: 1511–1520.

    Article  Google Scholar 

  • Yoon J H, Kang S J, Lee S Y, et al. 2010. Planococcus salinarum sp. nov., isolated from a marine solar saltern, and emended description of the genus Planococcus. International Journal of Systematic and Evolutionary Microbiology, 60(4): 754–758.

    Article  Google Scholar 

  • You Y H, Park M J, Lee M C, et al. 2015. Characterization and phylogenetic analysis of halophilic bacteria isolated from rhizosphere soils of coastal plants in Dokdo Islands. Korean Journal of Microbiology, 51(1): 86–95.

    Article  Google Scholar 

  • Zhao S, Zhou N, Zhao Z Y, et al. 2016. Isolation of endophytic plant growth-promoting bacteria associated with the halophyte Salicornia europaea and evaluation of their promoting activity under salt stress. Current Microbiology, 73(4): 574–581.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Eurasia Program of the Norwegian Centre for Cooperation in Education (CPEA-LT-2016/10095), the German Academic Exchange Service (DAAD) and the President’s International Fellowship Initiative of the Chinese Academy of Sciences (2018VBA002S).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vyacheslav Shurigin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shurigin, V., Egamberdieva, D., Li, L. et al. Endophytic bacteria associated with halophyte Seidlitzia rosmarinus Ehrenb. ex Boiss. from saline soil of Uzbekistan and their plant beneficial traits. J. Arid Land 12, 730–740 (2020). https://doi.org/10.1007/s40333-020-0019-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40333-020-0019-4

Keywords

Navigation