Skip to main content

Ridge-furrow plastic mulching with a suitable planting density enhances rainwater productivity, grain yield and economic benefit of rainfed maize

Abstract

Soil surface mulching and planting density regulation are widely used for effective utilization of limited rainwater resources and improvement of crop productivity in dryland farming. However, the combined effects of mulching type and planting density on maize growth and yield have been seldom studied, especially in different hydrological years. A field experiment was conducted to evaluate the effects of mulching type and planting density on the soil temperature, growth, grain yield (GY), water use efficiency (WUE) and economic benefit of rainfed maize in the drylands of northern China during 2015–2017. Precipitation fluctuated over the three years. There were four mulching types (NM, flat cultivation with non-mulching; SM, flat cultivation with straw mulching; RP, plastic-mulched ridge plus bare furrow; RPFS, plastic-mulched ridge plus straw-mulched furrow) and three planting densities (LD, low planting density, 45.0×103 plants/hm2; MD, medium planting density, 67.5×103 plants/hm2; HD, high planting density, 90.0×103 plants/hm2). Results showed that soil temperature was higher with RP and lower with SM compared with NM, but no significant difference was found between RPFS and NM. More soil water was retained by soil mulching at the early growth stage, but it significantly varied at the middle and late growth stages. Maize growth was significantly improved by soil mulching. With increasing planting density, stem diameter, net photosynthetic rate and chlorophyll content tended to decline, whereas a single-peak trend in biomass yield was observed. Mulching type and planting density did not have significant effect on evapotranspiration (ET), but GY and WUE were significantly affected. There were significant interacting effects of mulching type and planting density on biomass yield, GY, ET and WUE. Compared with NM, RPFS, RP and SM increased GY by 57.5%, 50.8% and 18.9%, and increased WUE by 66.6%, 54.3% and 18.1%, respectively. At MD, GY increased by 41.4% and 25.2%, and WUE increased by 38.6% and 22.4% compared with those of at LD and HD. The highest maize GY (7023.2 kg/hm2) was observed under MD+RPFS, but the value (6699.1 kg/hm2) was insignificant under MD+RP. Similar trends were observed for WUE under MD+RP and MD+RPFS, but no significant difference was observed between these two combinations. In terms of economic benefit, net income under MD+RP was the highest with a 9.8% increase compared with that of under MD+RPFS. Therefore, we concluded that RP cultivation pattern with a suitable planting density (67.5×103 plants/hm2) is promising for rainwater resources utilization and maize production in the drylands of northern China.

This is a preview of subscription content, access via your institution.

References

  • Abuzar M R, Sadozai G U, Baloch M S, et al. 2011. Effect of plant population densities on yield of maize. Journal of Animal and Plant Science, 21: 692–695.

    Google Scholar 

  • Allen R G, Pereira L S, Raes D, et al. 1998. Crop evapotranspiration-guidelines for computing crop water requirements. FAO irrigation and drainage paper 56, FAO, Rome.

    Google Scholar 

  • Berzsenyi Z, Tokatlidis I S. 2012. Density-dependence rather than maturity determines hybrid selection in dryland maize production. Agronomy Journal, 104(2): 331–336.

    Article  Google Scholar 

  • Blum A. 2009. Effective use of water (EUW) and not water-use efficiency (WUE) is the target of crop yield improvement under drought stress. Field Crops Research, 112(2–3): 119–123.

    Article  Google Scholar 

  • Borras L, Slafer G A, Otegui M E. 2004. Seed dry weight response to source-sink manipulations in wheat, maize and soybean: a quantitative reappraisal. Field Crops Research, 86(2–3): 131–146.

    Article  Google Scholar 

  • Campbell G S, Norman J M. 1998. Introduction to Environmental Biophysics. New York: Springer Science+Business Media, 286.

    Book  Google Scholar 

  • Carpici E B, Celik N, Bayram G. 2010. Yield and quality of forage maize as influenced by plant density and nitrogen rate. Turkish Journal of Food Crop, 15(2): 128–132.

    Google Scholar 

  • Chen Y, Liu T, Tian X, et al. 2015. Effects of plastic film combined with straw mulch on grain yield and water use efficiency of winter wheat in Loess Plateau. Field Crops Research, 172: 53–58.

    Article  Google Scholar 

  • Ciampitti I A, Vyn T J. 2012. Physiological perspectives of changes over time in maize yield dependency on nitrogen uptake and associated nitrogen efficiencies: a review. Field Crops Research, 133: 48–67.

    Article  Google Scholar 

  • Cook H F, Valdes G S B, Lee H C. 2006. Mulch effects on rainfall interception, soil physical characteristics and temperature under Zea mays L. Soil and Tillage Research, 91: 227–235.

    Article  Google Scholar 

  • Dvorak P, Tomâsek J, Hamouz K, et al. 2015. Reply of mulch systems on weeds and yield components in potatoes. Plant and Soil Environment, 61: 322–327.

    Article  Google Scholar 

  • Fan J L, Baumgartl T, Scheuermann A, et al. 2015. Modeling effects of canopy and roots on soil moisture and deep drainage. Vadose Zone Journal, 14(2): 1–18.

    Article  Google Scholar 

  • Fan J L, Yue W J, Wu L F, et al. 2018. Evaluation of SVM, ELM and four tree-based ensemble models for predicting daily reference evapotranspiration using limited meteorological data in different climates of China. Agricultural and Forest Meteorology, 263: 225–241.

    Article  Google Scholar 

  • Gao Z, Feng H Y, Liang X G, et al. 2018. Limits to maize productivity in the North China Plain: A comparison analysis for spring and summer maize. Field Crops Research, 228: 39–47.

    Article  Google Scholar 

  • Gelmond H. 1978. Problems in crop seed germination. In: Gupta U S. Crop Physiology. New Delhi: Oxford and IBH, 7–15.

    Google Scholar 

  • Gu X B, Li Y N, Du Y D. 2016. Continuous ridges with film mulching improve soil water content, root growth, seed yield and water use efficiency of winter oilseed rape. Industrial Crops and Products, 85: 139–148.

    Article  Google Scholar 

  • Han Q F, Li X T, Wang J P, et al. 2004. Simulated study on soil moisture of field under water micro-collecting farming conditions. Transactions of the Chinese Society of Agricultural Engineering, 20: 78–82. (in Chinese)

    Google Scholar 

  • Hu Y J, Ma P H, Zhang B B, et al. 2019. Exploring optimal soil mulching for the wheat-maize cropping system in sub-humid drought-prone regions in China. Agricultural Water Management, 219: 59–71.

    Article  Google Scholar 

  • Iqbal R, Raza M A S, Saleem M F, et al. 2019. Physiological and biochemical appraisal for mulching and partial rhizosphere drying of cotton. Journal of Arid Land, 11(5): 785–794.

    Article  Google Scholar 

  • Jia Q M. 2018. Effects of rainwater-harvesting planting with supplemental irrigation and planting densities on the growth and photosynthetic physiology of maize in the semi-arid regions. PhD Dissertation. Yangling: Northwest A&F University. (in Chinese)

    Google Scholar 

  • Jia Q M, Sun L F, Shahzad A, et al. 2018a. Effect of planting density and pattern on maize yield and rainwater use efficiency in the Loess Plateau in China. Agricultural Water Management, 202: 19–32.

    Article  Google Scholar 

  • Jia Q M, Sun L F, Mou H Y, et al. 2018b. Effects of planting patterns and sowing densities on grain-filling, radiation use efficiency and yield of maize (Zea mays L.) in semi-arid regions. Agricultural Water Management, 201: 287–298.

    Article  Google Scholar 

  • Jia Q M, Sun L F, Wang J J, et al. 2018c. Limited irrigation and planting densities for enhanced water productivity and economic returns under the ridge-furrow system in semi-arid regions of China. Field Crops Research, 221: 207–218.

    Article  Google Scholar 

  • Kuai J, Sun Y Y, Zhou M, et al. 2016. The effect of nitrogen application and planting density on the radiation use efficiency and the stem lignin metabolism in rapeseed (Brassica napus L.). Field Crops Research, 199: 89–98.

    Article  Google Scholar 

  • Li R, Hou X Q, Jia Z K, et al. 2013. Effects on soil temperature, moisture, and maize yield of cultivation with ridge and furrow mulching in the rainfed area of the Loess Plateau, China. Agricultural Water Management, 116: 101–109.

    Article  Google Scholar 

  • Li Y, Liu C C, Zhang J H., et al. 2018. Variation in leaf chlorophyll concentration from tropical to cold-temperate forests: Association with gross primary productivity. Ecological Indicators, 85: 383–389.

    Article  Google Scholar 

  • Lin W, Liu W Z, Xue Q W. 2016. Spring maize yield, soil water use and water use efficiency under plastic film and straw mulches in the Loess Plateau. Scientific Report, 6: 1–10.

    Article  Google Scholar 

  • Liu C A, Jin S L, Zhou L M, et al. 2009. Effects of plastic film mulch and tillage on maize productivity and soil parameters. European Journal of Agronomy, 31(4): 241–249.

    Article  Google Scholar 

  • Liu J L, Bu L D, Zhu L, et al. 2014. Optimizing plant density and plastic film mulch to increase maize productivity and water use efficiency in semiarid areas. Agronomy Journal, 106(4): 1138–1146.

    Article  Google Scholar 

  • Liu Q F, Chen Y, Liu Y, et al. 2016. Coupling effects of plastic film mulching and urea types on water use efficiency and grain yield of maize in the Loess Plateau, China. Soil and Tillage Research, 157: 1–10.

    Article  Google Scholar 

  • Liu T N, Chen J Z, Wang Z Y, et al. 2018. Ridge and furrow planting pattern optimizes canopy structure of summer maize and obtains higher grain yield. Field Crops Research, 219: 242–249.

    Article  Google Scholar 

  • Mackinnery G. 1941. Absorption of light by chlorophyll solutions. The Journal of Biological Chemistry, 140: 315–322.

    Google Scholar 

  • Maddonni G A, Otegui M E, Cirilo A G. 2001. Plant population density, row spacing and hybrid effects on maize canopy architecture and light attenuation. Field Crops Research, 71(3): 183–193.

    Article  Google Scholar 

  • Mckee G W. 1964. A coefficient for computing leaf area in hybrid corn. Agronomy Journal, 56: 240–241.

    Article  Google Scholar 

  • Qiang S C, Zhang F C, Xiang Y Z, et al. 2015. Simulation and validation of critical nitrogen dilution curve for summer maize in Guanzhong Plain during different rainfall years. Transactions of the Chinese Society of Agricultural Engineering, 31(17): 168–175. (in Chinese)

    Google Scholar 

  • Qiang S C, Zhang Y, Fan J L, et al. 2019. Maize yield, rainwater and nitrogen use efficiency as affected by maize genotypes and nitrogen rates on the Loess Plateau of China. Agricultural Water Management, 213: 996–1003.

    Article  Google Scholar 

  • Ramachandra R A, Chaitanya K V, Vivekanandan M. 2004. Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. Journal of Plant Physiology, 161(11): 1189–1202.

    Article  Google Scholar 

  • Ren B Z, Dong S T, Liu P, et al. 2016. Ridge tillage improves plant growth and grain yield of waterlogged summer maize. Agricultural Water Management, 177: 392–399.

    Article  Google Scholar 

  • Ren X L, Cai T, Chen X L, et al. 2016. Effect of rainfall concentration with different ridge widths on winter wheat production under semiarid climate. European Journal of Agronomy, 77: 20–27.

    Article  Google Scholar 

  • Rossini M A, Maddonni G A, Otegui M E. 2011. Inter-plant competition for resources in maize crops grown under contrasting nitrogen supply and density: Variability in plant and ear growth. Field Crops Research, 121(3): 373–380.

    Article  Google Scholar 

  • Sadeghi M. 2013. The determination of plant density on dry matter accumulation, grain yield and yield components of four maize hybrids. International Journal of Agriculture and Crop Sciences, 5: 109.

    Google Scholar 

  • Sharma P, Abrol V, Sharma R K. 2011. Impact of tillage and mulch management on economics, energy requirement and crop performance in maize-wheat rotation in rainfed subhumid inceptisols, India. European Journal of Agronomy, 34(1): 46–51.

    Article  Google Scholar 

  • Wang X, Fan J, Xing Y, et al. 2019. The effects of mulch and nitrogen fertilizer on the soil environment of crop plants. Advance in Agronomy, 153: 121–173.

    Article  Google Scholar 

  • Wang X B, Cai D X, Hoogmoed W B, et al. 2007. Crop residue, manure and fertilizer in dryland maize under reduced tillage in northern China: I grain yields and nutrient use efficiencies. Nutrient Cycling in Agroecosystems, 79(1): 1–16.

    Article  Google Scholar 

  • Wang T C, Wei L, Wang H Z, et al. 2011. Responses of rainwater conservation, precipitation-use efficiency and grain yield of summer maize to a furrow-planting and straw-mulching system in northern China. Field Crops Research, 124(2): 223–230.

    Article  Google Scholar 

  • Wang Y Q, Zhang Y H, Zhou S L, et al. 2018. Meta-analysis of no-tillage effect on wheat and maize water use efficiency in China. Science of the Total Environment, 635: 1372–1382.

    Article  Google Scholar 

  • Xue J Q, Zhang R H, Li F Y, et al. 2008. Current status, problem and strategy of maize breeding in Shannxi Province. Journal of Maize Science, 16(2): 139–141. (in Chinese)

    Google Scholar 

  • Yin W, Chen G P, Feng F X, et al. 2017. Straw retention combined with plastic mulching improves compensation of intercropped maize in arid environment. Field Crops Research, 204: 42–51.

    Article  Google Scholar 

  • Zhang F, Ibrahim M E, Li M, et al. 2019. Integrated model and field experiment to determine the optimum planting density in plastic film mulched rainfed agriculture. Agricultural and Forest Meteorology, 268: 331–340.

    Article  Google Scholar 

  • Zhang H J, Dong H Z, Li W J, et al. 2012. Effects of soil salinity and plant density on yield and leaf senescence of field-grown cotton. Journal of Agronomy and Crop Science, 198(1): 27–37.

    Article  Google Scholar 

  • Zhang S H, Sadras V, Chen X P, et al. 2014. Water use efficiency of dryland maize in the Loess Plateau of China in response to crop management. Field Crops Research, 163: 55–63.

    Article  Google Scholar 

  • Zhang X D, Zhao J, Yang L C, et al. 2019. Ridge-furrow mulching system regulates diurnal temperature amplitude and wetting-drying alternation behavior in soil to promote maize growth and water use in a semiarid region. Field Crops Research, 233: 121–130.

    Article  Google Scholar 

  • Zhang Y Q, Wang J D, Gong S H, et al. 2019. Straw mulching enhanced the photosynthetic capacity of field maize by increasing the leaf N use efficiency. Agricultural Water Management, 218: 60–67.

    Article  Google Scholar 

  • Zheng J, Fan J L, Zhang F C, et al. 2018a. Mulching mode and planting density affect canopy interception loss of rainfall and water use efficiency of dryland maize on the Loess Plateau of China. Journal of Arid Land, 10(5): 794–808.

    Article  Google Scholar 

  • Zheng J, Fan J L, Zhang F C, et al. 2018b. Rainfall partitioning into throughfall, stemflow and interception loss by maize canopy on the semi-arid Loess Plateau of China. Agricultural Water Management, 195: 25–36.

    Article  Google Scholar 

  • Zheng J, Fan J L, Zhang F C, et al. 2019. Throughfall and stemflow heterogeneity under the maize canopy and its effect on soil water distribution at the row scale. Science of the Total Environment, 660: 1367–1382.

    Article  Google Scholar 

  • Zhou L M, Li F M, Jin S L, et al. 2009. How two ridges and the furrow mulched with plastic film affect soil water, soil temperature and yield of maize on the semiarid Loess Plateau of China. Field Crops Research, 113(1): 41–47.

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by the National Natural Science Foundation of China (51879226, 51509208) and the Overseas Expertise Introduction Project for Discipline Innovation (111 Project; B12007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fucang Zhang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zheng, J., Fan, J., Zou, Y. et al. Ridge-furrow plastic mulching with a suitable planting density enhances rainwater productivity, grain yield and economic benefit of rainfed maize. J. Arid Land 12, 181–198 (2020). https://doi.org/10.1007/s40333-020-0001-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40333-020-0001-1

Keywords

  • dryland farming
  • evapotranspiration
  • net income
  • soil temperature
  • soil water storage