Potential impacts of climate change on Welwitschia mirabilis populations in the Namib Desert, southern Africa

Abstract

Climate change is threatening natural ecosystems in the Earth, and arid regions of southern Africa are particularly exposed to further drying. Welwitschia mirabilis Hook. (Welwitschiaceae) is an unusual gymnosperm tree that is recognized as an icon of the Namib Desert, southern Africa. Many aspects of its biology were investigated in the past, with a special emphasis for its physiology and adaptations, but nothing is known about its potential sensitivity to current climate changes. In this study, we adopted an approach based on distribution data for W. mirabilis and ecological niche models for clarifying the species-climate interactions and for predicting the potential impacts of climate change on W. mirabilis populations in three well-separated sub-ranges (northern, southern and central) in northwestern Namibia, southern Africa. We evidenced that the populations occurring in the northern sub-range have peculiar climatic exigencies compared with those in the central and southern sub-ranges and are particularly exposed to the impact of climate change, which will consist of a substantial increase in temperature across the region. These impacts could be represented by demographic changes that should be detected and monitored detailedly to plan efficient measures for managing populations of this important species on the long-term scale.

This is a preview of subscription content, access via your institution.

References

  1. Araújo M B, New M. 2007. Ensemble forecasting of species distributions. Trends in Ecology & Evolution, 22(1): 42–47.

    Article  Google Scholar 

  2. Bakkenes M, Alkemade J R M, Ihle F, et al. 2002. Assessing effects of forecasted climate change on the diversity and distribution of European higher plants for 2050. Global Change Biology, 8(4): 390–407.

    Article  Google Scholar 

  3. Belsley D A, Kuh E, Welsch R E. 1981. Regression diagnostics: identifying influential data and sources of collinearity. Journal of Marketing Research, 18(3): 392–393.

    Article  Google Scholar 

  4. Blach-Overgaard A, Balslev H, Dransfield J, et al. 2015. Global-change vulnerability of a key plant resource, the African palms. Scientific Reports, 5: 12611.

    Article  Google Scholar 

  5. Bombi P, D’Amen M. 2012. Scaling down distribution maps from atlas data: a test of different approaches with virtual species. Journal of Biogeography, 39(4): 640–651.

    Article  Google Scholar 

  6. Bombi P, Salvi D, Bologna M A. 2012. Cross-scale predictions allow the identification of local conservation priorities from atlas data. Animal Conservation, 15(4): 378–387.

    Article  Google Scholar 

  7. Bombi P, D’Andrea E, Rezaie N, et al. 2017. Which climate change path are we following? Bad news from Scots pine. PLoS ONE, 12: e0189468.

    Article  Google Scholar 

  8. Bornman C H, Elsworthy J A, Butler V, et al. 1972. Welwitschia mirabilis: observations on general habit, seed, seedling and leaf characteristics. Madoqua, 1: 53–66.

    Google Scholar 

  9. Breiman L, Friedman J, Olshen R, et al. 1984. Classification and regression trees. Encyclopedia of Ecology, 40(3): 582–588.

    Google Scholar 

  10. Breiman L. 2001. Random forests. Machine Learning, 45(1): 5–32.

    Article  Google Scholar 

  11. Bubenzer O, Bolten A, Darius F, et al. 2004. Digital Atlas of Namibia. [2017-07-26]. https://doi.org/www.uni-koeln.de/sfb389/e/e1/download/atlas_namibia/index_e.htm.

    Google Scholar 

  12. Busby J. 1991. BIOCLIM-a bioclimate analysis and prediction system. Plant Protection Quarterly, 6: 8–9.

    Google Scholar 

  13. Bush A, Mokany K, Catullo R, et al. 2016. Incorporating evolutionary adaptation in species distribution modelling reduces projected vulnerability to climate change. Ecology letters, 19(20): 1468–1478.

    Article  Google Scholar 

  14. Cristofari R, Liu X, Bonadonna F, et al. 2018. Climate-driven range shifts of the king penguin in a fragmented ecosystem. Nature Climate Change, 8(3): 245–251.

    Article  Google Scholar 

  15. Dobson A J. 1990. An Introduction to Generalized Linear Models. London: Chapman and Hall, 240.

    Book  Google Scholar 

  16. Elith J, Leathwick J R. 2009. Species distribution models: ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution, and Systematics, 40: 677–697.

    Article  Google Scholar 

  17. Fielding A H, Bell J F. 1997. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation, 24(1): 38–49.

    Article  Google Scholar 

  18. Foden W, Midgley G F, Hughes G, et al. 2007. A changing climate is eroding the geographical range of the Namib Desert tree Aloe through population declines and dispersal lags. Diversity and Distributions, 13(5): 645–653.

    Article  Google Scholar 

  19. Friedman J H. 1991. Multivariate adaptive regression splines. Annals of Statistics, 19(1): 1–67.

    Article  Google Scholar 

  20. Friedman J, Hastie T, Tibshirani R. 2000. Additive logistic regression: a statistical view of boosting. The Annals of Statistics, 28(2): 337–407.

    Article  Google Scholar 

  21. Ge X Z, He S Y, Wang T, et al. 2015. Potential distribution predicted for Rhynchophorus ferrugineus in China under different climate warming scenarios. PLoS ONE, 10: e0141111.

    Article  Google Scholar 

  22. Giess W. 1969. Welwitschia mirabilis Hook. fil. Dinteria. 3: 3–55.

    Google Scholar 

  23. Guisan A, Zimmermann N E. 2000. Predictive habitat distribution models in ecology. Ecological Modelling, 135(2–3): 147–186.

    Article  Google Scholar 

  24. Guisan A, Thuiller W. 2005. Predicting species distribution: Offering more than simple habitat models. Ecology letters, 8(9): 993–1009.

    Article  Google Scholar 

  25. Guisan A, Tingley R, Baumgartner J B, et al. 2013. Predicting species distributions for conservation decisions. Ecology letters, 16(12): 1424–1435.

    Article  Google Scholar 

  26. Guo D, Guo R, Cui Y H, et al. 2011. Climate change impact on quiver trees in arid namibia and south africa. In: Blanco J A. Climate Change. London: IntechOpen, 323–342.

    Google Scholar 

  27. Hastie T, Tibshirani R, Buja A. 1994. Flexible disriminant analysis by optimal scoring. Journal of the American Statistical Association, 89(428): 1255–1270.

    Article  Google Scholar 

  28. Henschel J R, Seely M K. 2000. Long-term growth patterns of Welwitschia mirabilis, a long-lived plant of the Namib Desert (including a bibliography). Plant Ecology. 150(1–2): 7–26.

    Article  Google Scholar 

  29. Hijmans R J, Cameron S, Parra J, et al. 2005a. WorldClim–Global Climate Data. [2016-03-24]. https://doi.org/www.worldclim.org/.

    Google Scholar 

  30. Hijmans R J, Cameron S E, Parra J L, et al. 2005b. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25(15): 1965–1978.

    Article  Google Scholar 

  31. Hole D G, Willis S G, Pain D J, et al. 2009. Projected impacts of climate change on a continent-wide protected area network. Ecology letters, 12(5): 420–431.

    Article  Google Scholar 

  32. IUCN. 2012. IUCN Red List Categories and Criteria: Version 3.1 (2nd ed.). Colchester Print Group, Gland, Switzerland and Cambridge, UK.

    Google Scholar 

  33. Iverson L R, Prasad A M. 2002. Potential redistribution of tree species habitat under five climate change scenarios in the eastern US. Forest Ecology and Management, 155(1–3): 205–222.

    Article  Google Scholar 

  34. Jacobson K M, Lester E. 2003. A first assessment of genetic variation in Welwitschia mirabilis Hook. Journal of Heredity, 94(3): 212–217.

    Article  Google Scholar 

  35. Jacobson N, Jacobson P, van Jaarsveld E, et al. 2014. Field evidence from Namibia does not support the designation of Angolan and Namibian subspecies of Welwitschia mirabilis Hook. Transactions of the Royal Society of South Africa, 69(3): 179–186.

    Article  Google Scholar 

  36. Kers L E. 1967. The distribution of Welwitschia mirabilis Hook. f. Svensk Botanisk Tidskrift, 61: 97–125.

    Google Scholar 

  37. Krüger G H J, Jordaan A, Tiedt L R et al. 2017. Opportunistic survival strategy of Welwitschia mirabilis: recent anatomical and ecophysiological studies elucidating stomatal behaviour and photosynthetic potential. Botany, 95(12): 1109–1123.

    Article  Google Scholar 

  38. Leuenberger B E. 2001. Welwitschia mirabilis (Welwitschiaceae), male cone characters and a new subspecies. Willdenowia, 31(2): 357–381.

    Article  Google Scholar 

  39. Maggs G L, Craven P, Kolberg, H. 1998. Plant species richness, endemism, and genetic resources in Namibia. Biodiversity and Conservation, 7(4): 435–446.

    Article  Google Scholar 

  40. Mendelsohn J, Jarvis A, Roberts C, et al. 2002. Atlas of Namibia. Capetown: David Phillips Publishers, 1–200.

    Google Scholar 

  41. Midgley G F, Bond W J. 2015. Future of African terrestrial biodiversity and ecosystems under anthropogenic climate change. Nature Climate Change, 5: 823–829.

    Article  Google Scholar 

  42. Moritz C, Agudo R. 2013. The future of species under climate change: resilience or decline? Science, 341(6145): 504–508.

    Article  Google Scholar 

  43. Parmesan C, Yohe G. 2003. A globally coherent fingerprint of climate change impacts across natural systems. Nature, 421: 37–42.

    Article  Google Scholar 

  44. Pearman P B, Guisan A, Broennimann O, et al. 2008. Niche dynamics in space and time. Trends in Ecology & Evolution, 23(3): 149–158.

    Article  Google Scholar 

  45. Peterson A T, Radocy T, Hall E, et al. 2014. The potential distribution of the Vulnerable African lion Panthera leo in the face of changing global climate. Oryx, 48(4): 555–564.

    Article  Google Scholar 

  46. R Development Core Team. 2016. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.

    Google Scholar 

  47. Ripley B D. 1996. Pattern Recognition and Neural Networks. Cambridge: Cambridge University Press, 1–354.

    Book  Google Scholar 

  48. Thuiller W, Araújo M B, Pearson R G, et al. 2004. Uncertainty in predictions of extinction risk. Nature, 427: 145–148.

    Article  Google Scholar 

  49. Thuiller W, Midgley G F, Hughes G O, et al. 2006a. Endemic species and ecosystem sensitivity to climate change in Namibia. Global Change Biology, 12: 1–18.

    Article  Google Scholar 

  50. Thuiller W, Lavorel S, Sykes M T, et al. 2006b. Using niche-based modelling to assess the impact of climate change on tree functional diversity in Europe. Diversity and Distributions, 12(1): 49–60.

    Article  Google Scholar 

  51. Thuiller W, Georges D, Engler R, et al. 2016. Biomod2: ensemble platform for species distribution modeling. R package version 3.3-7. https://CRAN.R-project.org/package=biomod2.

    Google Scholar 

  52. Valverde A, De Maayer P, Oberholster T et al. 2016. Specific microbial communities associate with the rhizosphere of Welwitschia mirabilis, a living fossil. PLoS ONE, 11(4): e0153353.

    Article  Google Scholar 

  53. Walther G R, Post E, Convey P, et al. 2002. Ecological responses to recent climate change. Nature, 416: 389–395.

    Article  Google Scholar 

Download references

Acknowledgements

The study was supported by the LifeWatch-ITA European Research Infrastructure on Biodiversity and the Project LIFE+ ManFor C.BD. (LIFE09 ENV/IT/000078). The author wishes to thank Michael THOMPSON for the improvement of the English style, and two anonymous reviewers for their helpful comments.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Pierluigi Bombi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bombi, P. Potential impacts of climate change on Welwitschia mirabilis populations in the Namib Desert, southern Africa. J. Arid Land 10, 663–672 (2018). https://doi.org/10.1007/s40333-018-0067-1

Download citation

Keywords

  • global warming
  • range fragmentation
  • climatic suitability
  • Welwitschia mirabilis
  • ecological niche model
  • Namib Desert