Skip to main content
Log in

Habitat, occurrence and conservation status of the Saharo-Macaronesian and Southern-Mediterranean element Fagonia cretica L. (Zygophyllaceae) in Italy

  • Published:
Journal of Arid Land Aims and scope Submit manuscript

Abstract

Fagonia cretica L. is an important component of Mediterranean dry grasslands and a rare and isolated species of Italian flora. In this study, an assessment is presented on the distribution, habitat, and conservation status of F. cretica in Italy. The results of field investigation and herbarium analysis show that this species grows in a small area within the southern Calabria region characterized by a warmest and driest Mediterranean climate on the Italian peninsula. F. cretica is a semi-desert plant species growing in Italy in only one peripheral and isolated population at the northern limit of its distribution. Plant community analysis, using the phytosociological method, shows that F. cretica grows in wintergreen perennial dry grasslands dominated by Lygeum spartum and Hyparrhenia hirta. F. cretica plant communities are located in thermo-xeric habits such as south-, southeast- and east-facing slopes on clays and sandy clays in southern Calabria. The population of F. cretica is fragmented in six neighbouring localities, with two of which belonging to a Site of Community Importance (SCI). The conservation status of F. cretica population is not very good, and is defined as “Critically Endangered” in accordance with IUCN criteria. There are many threats affecting the F. cretica population in Italy, primarily the changes in land uses due to urban expansion and reforestation with exotic plants. The southern end of the Italian peninsula hosts other plants from thermo-xeric habits that do not adapt to the current local climate. This territory can be considered as a microrefugia for plants currently distributed in the arid territory of the southern Mediterranean. These results contribute to the discussion of some conservation measures, and the possibility of establishing a micro-reserve. For all these reasons, we propose to include F. cretica in the lists of protected plant species at regional (Calabria) and country (Italy) scales in Italy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abeli T, Gentili R, Mondoni A, et al. 2014. Effects of marginality on plant population performance. Journal of Biogeography, 41(2): 239–249.

    Article  Google Scholar 

  • Agnesi V, Di Maggio C, Macaluso T, et al. 2000. Quaternary environmental-climatic changes in Sicily. Memorie della Società Geologica Italiana, 55: 339–344. http://www.socgeol.info/it/fascicoli/?t=Memorie&y=2000&v=55. (in Italian)

    Google Scholar 

  • Akeroyd J. 1998. Micro-reserves ‘capture’ Valencia’s special flora. Valencia, Spain: Plant Talk, 14: 20–23.

    Google Scholar 

  • Apostolova I, Dengler J, Di Pietro R, et al. 2014. Dry grasslands of southern Europe: syntaxonomy, management and conservation. Hacquetia, 13(1): 5–18.

    Article  Google Scholar 

  • Bañares Á, Blanca G, Güemes J, et al. 2010. Atlas and Red Book of the Endangered Vascular Flora of Spain. Adenda 2010. Madrid: General Management of Natural Environment and Forest Policy and Spanish Society of Plants Conservation Biology, 1–170. (in Spanish)

    Google Scholar 

  • Batanouny K, Batanouny M. 1970. Autecology of common Egyptian Fagonia species. Phyton, 14(1–2): 79–92.

    Google Scholar 

  • Beier B A. Nylander J A A, Chase M W, et al. 2004. Phylogenetic relationships and biogeography of the desert plant genus Fagonia (Zygophyllaceae), inferred by parsimony and Bayesian model averaging. Molecular Phylogenetics and Evolution, 33(1): 91–108.

    Article  Google Scholar 

  • Beier B A. 2005. A revision of the desert shrub Fagonia (Zygophyllaceae). Systematics and Biodiversity, 3(3): 221–263.

    Article  Google Scholar 

  • Bertini A. 2010. Pliocene to Pleistocene palynoflora and vegetation in Italy: state of the art. Quaternary International, 225(1): 5–24.

    Article  Google Scholar 

  • Bivona Bernardi A. 1806. Sicularum Plantarum. Centuria Prima. Palermo: Phylippum Barravecchia, 1–84. (in Latin)

    Google Scholar 

  • Bonfiglio L, Mangano G, Marra A C, et al. 2002. Pleistocene Calabrian and Sicilian bioprovinces. Geobios, 35(Suppl. 1): 29–39.

    Article  Google Scholar 

  • Braun-Blanquet J. 1964. Plant Sociology. The Study of Plant Communities. Vienna and New York: Springer, 1–865. (in German)

    Google Scholar 

  • Bredenkamp G J, Spada F, Kazmierczak E. 2002. On the origin of northern and southern hemisphere grasslands. Plant Ecology, 163(2): 209–229.

    Article  Google Scholar 

  • Brullo S, Scelsi F, Spampinato G. 2001. The Vegetation of Aspromonte. A phytosociological Study. Reggio Calabria: Laruffa Editore, 1–368. (in Italian)

    Google Scholar 

  • Capraro L, Asioli A, Backman J, et al. 2005. Climatic patterns revealed by pollen and oxygen isotope records across the Matuyama-Brunhes Boundary in the central Mediterranean (southern Italy). Geological Society, London, Special Publications, 247(1): 159–182.

    Article  Google Scholar 

  • CASMEZ (Cassa del Mezzoggorno). 1968–1969. Geological map of Calabria at 1:25,000 scale. F. 263–I N.O. Ercolano (Napoli): Poligrafica and Cartevalori. (in Italian)

    Google Scholar 

  • Conti F, Manzi A, Pedrotti F. 1997. Regional Red Lists of Italian Plants. Camerino: WWF Italia, Società Botanica Italiana, 1–139. (in Italian)

    Google Scholar 

  • Conti F, Abbate G, Alessandrini A, et al. 2005. An annotated checklist of the Italian vascular flora. Rome: Palombi Editore, 1–420.

    Google Scholar 

  • Díez-Garretas B, Asensi A. 1999. Syntaxonomic analysis of the Andropogon-rich grasslands (Hyparrhenietalia hirtae) in the western Mediterranean region. Folia Geobotanica, 34(3): 307–320.

    Article  Google Scholar 

  • Dobrowski S Z. 2011. A climatic basis for microrefugia: the influence of terrain on climate. Global Change Biology, 17(2): 1022–1035.

    Article  Google Scholar 

  • Giardina G, Raimondo F M, Spadaro V. 2007. A catalogue of plants growing in Sicily. Bocconea, 20: 5–582.

    Google Scholar 

  • Guarino R. 2006. Origin and evolution of the Mediterranean dry grasslands. Berichte der Reinhold Tüxen Gesellschaft, 18: 195–206.

    Google Scholar 

  • Gussone J. 1827. Florae Siculae Prodromus Sive Plantarum in Sicilia Ulteriori Nascentium Enumeratio Secundum Systema Linneanum Disposita. Napoli: Ex Regia typographia, 1–586. (in Latin)

    Google Scholar 

  • Halada L, Evans D, Romão C, et al. 2011. Which habitats of European importance depend on agricultural practices? Biodiversity and Conservation, 20(11): 2365–2378.

    Article  Google Scholar 

  • Incarbona A, Zarcone G, Agate M, et al. 2010. A multidisciplinary approach to reveal the Sicily climate and environment over the last 20000 years. Central European Journal of Geosciences, 2(2): 71–82.

    Google Scholar 

  • IUCN. 2012. IUCN Red List Categories and Criteria Version 3.1 (2nd ed.). Gland, Switzerland & Cambridge, UK: IUCN.

    Google Scholar 

  • Jackson S T, Overpeck J T. 2000. Responses of plant populations and communities to environmental changes of the late quaternary. Paleobiology, 26(4): 194–220.

    Article  Google Scholar 

  • Jones B, Gliddon C, Good J E G. 2001. The conservation of variation in geographically peripheral populations: Lloydia serotina (Liliaceae) in Britain. Biological Conservation, 101(2): 147–156.

    Article  Google Scholar 

  • Laguna E, Deltoro V I, Pèrez-Botella J, et al. 2004. The role of small reserves in plant conservation in a region of high diversity in eastern Spain. Biological Conservation, 119(3): 421–426.

    Article  Google Scholar 

  • Lanfranco E. 1989. The flora. In: Schembri P J, Sultana J. Red Data Book for the Maltese Islands. Valletta, Malta: Department of Information, 5–70.

  • Leppig G, White J W. 2006. Conservation of peripheral plant populations in California. Madroño, 53(3): 264–274.

    Article  Google Scholar 

  • MATT (Ministero dell’Ambiente e della Tutela del Territorio e del Mare). 2013. Repertory of the protected Italian flora. [2016-01-15]. http://www.minambiente.it/pagina/repertorio-della-flora-italiana-protetta. (in Italian)

    Google Scholar 

  • Médail F, Quézel P. 1997. Hot-spots analysis for conservation of plant biodiversity in the Mediterranean Basin. Annals of the Missouri Botanical Garden, 84(1): 112–127.

    Article  Google Scholar 

  • Mendoza-Fernández A, Pérez-García F J, Martínez-Hernández F, et al. 2014. Threatened plants of arid ecosystems in the Mediterranean Basin: a case study of the south-eastern Iberian Peninsula. Oryx, 48(4): 548–554.

    Article  Google Scholar 

  • Navarro T, Alados C L, Cabezudo B. 2006. Changes in plant functional types in response to goat and sheep grazing in two semi-arid shrublands of SE Spain. Journal of Arid Environments, 64(2): 298–322.

    Article  Google Scholar 

  • Nicotra L. 1908. Fagonia cretica in the Italian continent. Bullettino della Società Botanica Italiana, 1908: 67–69. (in Italian)

    Google Scholar 

  • Panuccio M R, Fazio A, Musarella C M, et al. 2017. Seed germination and antioxidant pattern in Lavandula multifida (Lamiaceae): a comparison between core and peripheral populations. Plant Biosystems, doi: 10.1080/11263504.2017.1297333.

    Google Scholar 

  • Pignatti S. 1978. Evolutionary trends in Mediterranean flora and vegetation. Vegetatio, 37(3): 175–185.

    Article  Google Scholar 

  • Pignatti S. 1982. Flora d’Italia. Bologna: Edagricole, 2: 19. (in Italian)

    Google Scholar 

  • Pignatti S. 2011. Western Sicily as an interface between the African continent and Europe. Naturalista Siciliano, S. IV, 35(1): 3–8. (in Italian)

    Google Scholar 

  • Podani J. 2001. SYN-TAX 2000. Computer programs for data analysis in ecology and systematics. User’s manual. Budapest: Scientia Publishing, 1–53.

    Google Scholar 

  • Podani J. 2006. Braun-Blanquet’s legacy and data analysis in vegetation science. Journal of Vegetation Science, 17(1): 113–117.

    Article  Google Scholar 

  • Pottier-Alapetite G. 1979. Flora of Tunisia: Angiosperms-Dicotyledones. Tunis: Ministry of Higher Education and Scientific Research and Ministry of Agriculture, 1–651. (in French)

    Google Scholar 

  • Presl J S, Presl C B. 1822. Deliciae Pragenses Historiam Naturalem Spectantes. Prague: Sumtibus Calve, 1–264. (in Latin)

    Google Scholar 

  • Privitera M, Puglisi M, Sambataro R. 2002. Phytogeographic considerations on the bryophyte flora of the southern Aspromonte badlands (Calabria). Braun Blanquetia, 31: 55–57. (in Italian)

    Google Scholar 

  • Quézel P, Santa S. 1962. New Flora of Algeria and the Southern Desert Regions, 2. Pairs: CNRS, 1–1170. (in French)

    Google Scholar 

  • Quézel P, Médail F. 2003. Ecology and Biogeography of Mediterranean Basin Forests. Paris: Elsevier, 1–573. (in French)

    Google Scholar 

  • Rivas-Martínez S, Rivas-Saenz S. 1996–2017. Worldwide bioclimatic classification system. Phytosociological research center, Spain. [2016-01-15]. http://www.globalbioclimatics.org.

    Google Scholar 

  • Rivas-Martínez S, Fernández-González F, Loidi J, et al. 2001. Syntaxonomical checklist of vascular plant communities of Spain and Portugal to association level. Itinera Geobotanica, 14: 5–341.

    Google Scholar 

  • Sciandrello S, Guarino R, Minissale P, et al. 2015. The endemic vascular flora of Peloritani Mountains (NE Sicily): plant functional traits and phytogeographical relationships in the most isolated and fragmentary micro-plate of the Alpine orogeny. Plant Biosystems, 149(5): 838–854.

    Article  Google Scholar 

  • Scott J M, Goble D D, Haines A M, et al. 2010. Conservation-reliant species and the future of conservation. Conservation Letters, 3(2): 91–97.

    Article  Google Scholar 

  • Signorino G, Cannavò S, Crisafulli A, et al. 2011. Fagonia cretica L. Informatore Botanico Italiano, 43(2): 381–458. (in Italian)

    Google Scholar 

  • Song L, Bao X M, Liu X J, et al. 2012. Impact of nitrogen addition on plant community in a semi-arid temperate steppe in China. Journal of Arid Land, 4(1): 3–10.

    Article  Google Scholar 

  • Spampinato G. 2014. Guide to the Aspromonte Flora. Reggio Calabria: Laruffa Editore, 1–448. (in Italian)

    Google Scholar 

  • Van der Maarel E. 1979. Transformation of cover-abundance values in phytosociology and its effects on community similarity. Vegetatio, 39(2): 97–114.

    Article  Google Scholar 

  • Walter H, Lieth H. 1967. Klimadiagramm Weltatlas. Jena: VEB Gustav Fischer Verlag.

    Google Scholar 

  • Weber H E, Moravec J, Theurillat J P. 2000. International code of phytosociological nomenclature (3rd ed.). Journal of Vegetation Science, 11(5): 739–768.

    Article  Google Scholar 

  • Zahran M A, Willis A J. 2009. The Vegetation of Egypt. Netherlands: Springer, 1–437.

    Book  Google Scholar 

Download references

Acknowledgements

We would like to thank Ms Pru BROOKE-TURNER for the English translation of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Spampinato.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spampinato, G., Musarella, C.M., Cano-Ortiz, A. et al. Habitat, occurrence and conservation status of the Saharo-Macaronesian and Southern-Mediterranean element Fagonia cretica L. (Zygophyllaceae) in Italy. J. Arid Land 10, 140–151 (2018). https://doi.org/10.1007/s40333-017-0076-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40333-017-0076-5

Keywords

Navigation