Skip to main content

Evolution of crescent-shaped sand dune under the influence of injected sand flux: scaling law and wind tunnel experiment

Abstract

This paper studies the evolution of crescent-shaped dune under the influence of injected flux. A scaling law and a wind tunnel experiment are carried out for comparison. The experiment incorporates a novel image processing algorithm to recover the evolutionary process. The theoretical and experimental results agree well in the middle stage of dune evolution, but deviate from each other in the initial and final stages, suggesting that the crescent-shaped dune evolution is intrinsically scale-variant and that the crescent shape breaks down under unsaturated condition.

This is a preview of subscription content, access via your institution.

References

  • Andreotti B, Claudin P, Douady S. 2002. Selection of dune shapes and velocities. Part 1: Dynamics of sand, wind and barchans. The European Physical Journal B-Condensed Matter and Complex Systems, 28(3): 321–339.

    Google Scholar 

  • Baas A C W. 2013. Modeling aeolian landscapes, In: Shroder J F. Treatise on Geomorphology. San Diego: Academic Press, 313–327.

    Chapter  Google Scholar 

  • Bagnold R A. 1941. The Physics of Blown Sand and Desert Dune. New York: Methuen, 39–98.

    Google Scholar 

  • Dauchot O, Lechénault F, Gasquet C, et al. 2002. “Barchan” dunes in the lab. Comptes Rendus Mécanique, 330(3): 185–191.

    Article  Google Scholar 

  • Duran O, Parteli E J R, Herrmann H J. 2010. A continuous model for sand dunes: review, new developments and application to barchans dunes and barchan dune fields. Earth Surface Processess & Landforms, 35(13): 1591–1600.

    Article  Google Scholar 

  • Ewing R C, Hayes A G, Lucas A. 2015. Sand dune patterns on Titan controlled by long-term climate cycles. Nature Geoscience, 8(1): 15–19.

    Article  Google Scholar 

  • Faria R, Ferreira A D, Sismeiro J L, et al. 2011. Wind tunnel and computational study of the stoss slope effect on the aeolian erosion of transverse sand dunes. Aeolian Research, 3(3): 303–314.

    Article  Google Scholar 

  • Franklin E M, Charru F. 2011. Subaqueous barchan dunes in turbulent shear flow. Part1. Dune motion. Journal of Fluid Mechanics, 675(5): 199–222.

    Article  Google Scholar 

  • Gao X, Zhang D, Rozier O, et al. 2014. Transport capacity and saturation mechanism in a real-space cellular automaton dune model. Advances in Geosciences, 37: 47–55.

    Article  Google Scholar 

  • Groh C, Wierschem A, Aksel N, et al. 2008. Barchan dunes in two dimensions: experimental tests for minimal models. Physical Review E, 78(2): 021304.

    Article  Google Scholar 

  • Guignier L, Niiya H, Nishimori H, et al. 2013. Sand dunes as migrating strings. Physical Review E, 87(5): 052206.

    Article  Google Scholar 

  • Herrmann H J, Kroy K, Sauermann G. 2001. Saturation transients in saltation and their implications on dune shapes. Physica A: Statistical Mechanics and Its Applications, 302(1–4): 244–254.

    Article  Google Scholar 

  • Hersen P, Douady S, Andreotti B. 2002. Relevant length scale of barchan dunes. Physical Review Letters, 89(26): 264301.

    Article  Google Scholar 

  • Hersen P. 2005. Flow effects on the morphology and dynamics of aeolian and subaqueous barchan dunes. Journal of Geophysical Research: Earth Surface, 11(F4): F04S07.

    Google Scholar 

  • Katsuki A, Nishimori H, Endo N, et al. 2005. Collision dynamics of two barchan dunes simulated using a simple model. Journal of the Physical Society of Japan, 74(2): 538–541.

    Article  Google Scholar 

  • Kok J F, Parteli E J R, Michaels T I, et al. 2012. The physics of wind-blown sand and dust. Reports on Progress in Physics, 75(10): 106901.

    Article  Google Scholar 

  • Kroy K, Sauermann G, Herrmann H J. 2002. Minimal model for aeolian sand dunes. Physical Review E, 66(3): 031302.

    Article  Google Scholar 

  • Lima A R, Sauermann G, Herrmann H J, et al. 2002. Modeling a dune field. Physica A: Statistical Mechanics and its Applications, 310(3–4): 487–500.

    Article  Google Scholar 

  • Narteau C, Zhang D, Rozler O, et al. 2009. Setting the length and time scales of a cellular automaton dune model from the analysis of superimposed bed forms. Journal of Geophysical Research: Earth Surface, 114(F3): F03006.

    Article  Google Scholar 

  • Parteli E J R, Duran O, Herrmann H J. 2007. Minimal size of a barchan dune. Physical Review E, 75(1): 011301.

    Article  Google Scholar 

  • Parteli E J R, Kroy K, Tsoar H, et al. 2014. Morphodynamic modeling of aeolian dunes: Review and future plans. The European Physical Journal Special Topics, 223(11): 2269–2283.

    Article  Google Scholar 

  • Pye K, Tsoar H. 2009. Aeolian Sand and Sand Dunes. Berlin Heidelberg: Springer.

    Book  Google Scholar 

  • Sauermann G, Kroy K, Herrmann H J. 2001. Continuum saltation model for sand dunes. Physical Review E, 64(3): 031305.

    Article  Google Scholar 

  • Schwämmle V, Herrmann H J. 2004. Modeling transverse dunes. Earth Surface Processes & Landforms, 29(6): 769–784.

    Article  Google Scholar 

  • Werner B T. 1995. Eolian dunes: computer simulations and attractor interpretation. Geology, 23(12): 1107–1110.

    Article  Google Scholar 

  • Zheng X J, Bo T L, Zhu W. 2009. A scale-coupled method for simulation of the formation and evolution of aeolian dune field. International Journal of Nonlinear Sciences and Numerical Simulation, 10(3): 387–396.

    Article  Google Scholar 

Download references

Acknowledgments

This work is funded by the National Natural Science Foundation of China (11402190), the China Postdoctoral Science Foundation (2014M552443), and the Natural Science Foundation of Shaanxi Province (2013JQ2001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Wang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Wang, Y., Zhou, X. et al. Evolution of crescent-shaped sand dune under the influence of injected sand flux: scaling law and wind tunnel experiment. J. Arid Land 9, 270–277 (2017). https://doi.org/10.1007/s40333-017-0005-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40333-017-0005-7

Keywords

  • crescent-shaped sand dune
  • scale-invariant model
  • wind tunnel experiment
  • image processing