Journal of Arid Land

, Volume 9, Issue 2, pp 270–277 | Cite as

Evolution of crescent-shaped sand dune under the influence of injected sand flux: scaling law and wind tunnel experiment

  • Yang Zhang
  • Yuan Wang
  • Xiaosi Zhou
  • Bin Yang


This paper studies the evolution of crescent-shaped dune under the influence of injected flux. A scaling law and a wind tunnel experiment are carried out for comparison. The experiment incorporates a novel image processing algorithm to recover the evolutionary process. The theoretical and experimental results agree well in the middle stage of dune evolution, but deviate from each other in the initial and final stages, suggesting that the crescent-shaped dune evolution is intrinsically scale-variant and that the crescent shape breaks down under unsaturated condition.


crescent-shaped sand dune scale-invariant model wind tunnel experiment image processing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work is funded by the National Natural Science Foundation of China (11402190), the China Postdoctoral Science Foundation (2014M552443), and the Natural Science Foundation of Shaanxi Province (2013JQ2001).


  1. Andreotti B, Claudin P, Douady S. 2002. Selection of dune shapes and velocities. Part 1: Dynamics of sand, wind and barchans. The European Physical Journal B-Condensed Matter and Complex Systems, 28(3): 321–339.Google Scholar
  2. Baas A C W. 2013. Modeling aeolian landscapes, In: Shroder J F. Treatise on Geomorphology. San Diego: Academic Press, 313–327.CrossRefGoogle Scholar
  3. Bagnold R A. 1941. The Physics of Blown Sand and Desert Dune. New York: Methuen, 39–98.Google Scholar
  4. Dauchot O, Lechénault F, Gasquet C, et al. 2002. “Barchan” dunes in the lab. Comptes Rendus Mécanique, 330(3): 185–191.CrossRefGoogle Scholar
  5. Duran O, Parteli E J R, Herrmann H J. 2010. A continuous model for sand dunes: review, new developments and application to barchans dunes and barchan dune fields. Earth Surface Processess & Landforms, 35(13): 1591–1600.CrossRefGoogle Scholar
  6. Ewing R C, Hayes A G, Lucas A. 2015. Sand dune patterns on Titan controlled by long-term climate cycles. Nature Geoscience, 8(1): 15–19.CrossRefGoogle Scholar
  7. Faria R, Ferreira A D, Sismeiro J L, et al. 2011. Wind tunnel and computational study of the stoss slope effect on the aeolian erosion of transverse sand dunes. Aeolian Research, 3(3): 303–314.CrossRefGoogle Scholar
  8. Franklin E M, Charru F. 2011. Subaqueous barchan dunes in turbulent shear flow. Part1. Dune motion. Journal of Fluid Mechanics, 675(5): 199–222.CrossRefGoogle Scholar
  9. Gao X, Zhang D, Rozier O, et al. 2014. Transport capacity and saturation mechanism in a real-space cellular automaton dune model. Advances in Geosciences, 37: 47–55.CrossRefGoogle Scholar
  10. Groh C, Wierschem A, Aksel N, et al. 2008. Barchan dunes in two dimensions: experimental tests for minimal models. Physical Review E, 78(2): 021304.CrossRefGoogle Scholar
  11. Guignier L, Niiya H, Nishimori H, et al. 2013. Sand dunes as migrating strings. Physical Review E, 87(5): 052206.CrossRefGoogle Scholar
  12. Herrmann H J, Kroy K, Sauermann G. 2001. Saturation transients in saltation and their implications on dune shapes. Physica A: Statistical Mechanics and Its Applications, 302(1–4): 244–254.CrossRefGoogle Scholar
  13. Hersen P, Douady S, Andreotti B. 2002. Relevant length scale of barchan dunes. Physical Review Letters, 89(26): 264301.CrossRefGoogle Scholar
  14. Hersen P. 2005. Flow effects on the morphology and dynamics of aeolian and subaqueous barchan dunes. Journal of Geophysical Research: Earth Surface, 11(F4): F04S07.Google Scholar
  15. Katsuki A, Nishimori H, Endo N, et al. 2005. Collision dynamics of two barchan dunes simulated using a simple model. Journal of the Physical Society of Japan, 74(2): 538–541.CrossRefGoogle Scholar
  16. Kok J F, Parteli E J R, Michaels T I, et al. 2012. The physics of wind-blown sand and dust. Reports on Progress in Physics, 75(10): 106901.CrossRefGoogle Scholar
  17. Kroy K, Sauermann G, Herrmann H J. 2002. Minimal model for aeolian sand dunes. Physical Review E, 66(3): 031302.CrossRefGoogle Scholar
  18. Lima A R, Sauermann G, Herrmann H J, et al. 2002. Modeling a dune field. Physica A: Statistical Mechanics and its Applications, 310(3–4): 487–500.CrossRefGoogle Scholar
  19. Narteau C, Zhang D, Rozler O, et al. 2009. Setting the length and time scales of a cellular automaton dune model from the analysis of superimposed bed forms. Journal of Geophysical Research: Earth Surface, 114(F3): F03006.CrossRefGoogle Scholar
  20. Parteli E J R, Duran O, Herrmann H J. 2007. Minimal size of a barchan dune. Physical Review E, 75(1): 011301.CrossRefGoogle Scholar
  21. Parteli E J R, Kroy K, Tsoar H, et al. 2014. Morphodynamic modeling of aeolian dunes: Review and future plans. The European Physical Journal Special Topics, 223(11): 2269–2283.CrossRefGoogle Scholar
  22. Pye K, Tsoar H. 2009. Aeolian Sand and Sand Dunes. Berlin Heidelberg: Springer.CrossRefGoogle Scholar
  23. Sauermann G, Kroy K, Herrmann H J. 2001. Continuum saltation model for sand dunes. Physical Review E, 64(3): 031305.CrossRefGoogle Scholar
  24. Schwämmle V, Herrmann H J. 2004. Modeling transverse dunes. Earth Surface Processes & Landforms, 29(6): 769–784.CrossRefGoogle Scholar
  25. Werner B T. 1995. Eolian dunes: computer simulations and attractor interpretation. Geology, 23(12): 1107–1110.CrossRefGoogle Scholar
  26. Zheng X J, Bo T L, Zhu W. 2009. A scale-coupled method for simulation of the formation and evolution of aeolian dune field. International Journal of Nonlinear Sciences and Numerical Simulation, 10(3): 387–396.CrossRefGoogle Scholar

Copyright information

© Xinjiang Institute of Ecology and Geography, the Chinese Academy of Sciences and Springer - Verlag GmbH 2017

Authors and Affiliations

  1. 1.Department of Fluid Machinery and EngineeringXi’an Jiaotong UniversityXi’anChina
  2. 2.School of Chemical EngineeringNorthwest UniversityXi’anChina

Personalised recommendations