Skip to main content
Log in

Spatial and temporal patterns of the inter-annual oscillations of glacier mass over Central Asia inferred from Gravity Recovery and Climate Experiment (GRACE) data

  • Published:
Journal of Arid Land Aims and scope Submit manuscript

Abstract

Monitoring glacier mass balance is crucial to managing water resources and also to understanding climate change for the arid and semi-arid regions of Central Asia. This study extracted the inter-annual oscillations of glacier mass over Central Asia from the first ten principal components (S-PCs) of filtered variability via multichannel singular spectral analysis (MSSA), based on gridded data of glacier mass inferred from Gravity Recovery and Climate Experiment (GRACE) data obtained from July 2002 to March 2015. Two significant cycles of glacier mass balance oscillations were identified. The first cycle with a period of 6.1-year accounted for 54.5% of the total variance and the second with a period of 2.3-year accounted for 4.3%. The 6.1-year oscillation exhibited a stronger variability compared with the 2.3-year oscillation. For the 6.1-year oscillation, the results from lagged cross-correlation function suggested that there were significant correlations between glacier mass balances and precipitation variations with the precipitation variations leading the response of glacier mass balances by 9–16 months.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Arendt A, Bolch T, Cogley J G, et al. 2012. Randolph Glacier Inventory–A Dataset of Global Glacier Outlines: Version 3.2. Boulder Colorado, USA: Global Land Ice Measurements from Space.

    Google Scholar 

  • Bettadpur S. 2003. Level-2 Gravity Field Product User Handbook. The GRACE Project. University of Texas: CSR Publication.

    Google Scholar 

  • Burg J P. 1967. Maximum entropy spectral analysis. In: Proceedings of the 37th Annual International Meeting. Society of Exploration Geophysics. Oklahoma, USA.

    Google Scholar 

  • Chambers D P, Bonin J A. 2012. Evaluation of Release-05 GRACE time-variable gravity coefficients over the ocean. Ocean Science Discussions, 9(3): 2187–2214.

    Article  Google Scholar 

  • Chen J L, Wilson C R, Tapley B D. 2006. Satellite gravity measurements confirm accelerated melting of Greenland ice sheet. Science, 313(5795): 1958–1960.

    Article  Google Scholar 

  • Chen J L, Wilson C R, Tapley B D. 2011. Interannual variability of Greenland ice losses from satellite gravimetry. Journal of Geophysical Research: Solid Earth, 116(B7): B07406.

    Article  Google Scholar 

  • Chen J L, Wilson C R, Tapley B D. 2013. Contribution of ice sheet and mountain glacier melt to recent sea level rise. Nature Geoscience, 6(7): 549–552.

    Article  Google Scholar 

  • Cheng M K, Tapley B D. 2004. Variations in the Earth’s oblateness during the past 28 years. Journal of Geophysical Research: Solid Earth, 109(B9): B09402.

    Article  Google Scholar 

  • Cowan P J. 2007. Geographic usage of the terms Middle Asia and Central Asia. Journal of Arid Environments, 69(2): 359–363.

    Article  Google Scholar 

  • de Linage C, Kim H, Famiglietti J S, et al. 2013. Impact of Pacific and Atlantic sea surface temperatures on interannual and decadal variations of GRACE land water storage in tropical South America. Journal of Geophysical Research: Atmospheres, 118(19): 10811–10829.

    Google Scholar 

  • Duan J B, Shum C K, Guo J Y, et al. 2012. Uncovered spurious jumps in the GRACE atmospheric de-aliasing data: potential contamination of GRACE observed mass change. Geophysical Journal International, 191(1): 83–87.

    Article  Google Scholar 

  • Farinotti D, Longuevergne L, Moholdt G, et al. 2015. Substantial glacier mass loss in the Tien Shan over the past 50 years. Nature Geoscience, 8(9): 716–722.

    Article  Google Scholar 

  • Flechtner F. 2007. AOD1B Product Description Document for Product Releases 01 to 04 (Rev. 3.1, April 13, 2007). Postdam: University of Texas, 327–750.

    Google Scholar 

  • Gardner A S, Moholdt G, Cogley J G, et al. 2013. A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science, 340(6134): 852–857.

    Article  Google Scholar 

  • Geruo A, Wahr J, Zhong S J. 2013. Computations of the viscoelastic response of a 3-D compressible Earth to surface loading: an application to Glacial Isostatic Adjustment in Antarctica and Canada. Geophysical Journal International, 192(2): 557–572.

    Article  Google Scholar 

  • Ghil M, Allen M R, Dettinger M D, et al. 2002. Advanced spectral methods for climatic time series. Reviews of Geophysics, 40(1): 1–41.

    Article  Google Scholar 

  • Huffman G J, Bolvin D T, Nelkin E J, et al. 2007. The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. Journal of Hydrometeorology, 8(1): 38–55.

    Article  Google Scholar 

  • Immerzeel W W, Van Beek L P H, Bierkens M F P. 2010. Climate change will affect the Asian water towers. Science, 328(5984): 1382–1385.

    Article  Google Scholar 

  • Jacob T, Wahr J, Pfeffer W T, et al. 2012. Recent contributions of glaciers and ice caps to sea level rise. Nature, 482(7386): 514–518.

    Article  Google Scholar 

  • Kononova N K, Pimankina N V, Yeriskovskaya L A, et al. 2015. Effects of atmospheric circulation on summertime precipitation variability and glacier mass balance over the Tuyuksu Glacier in Tianshan Mountains, Kazakhstan. Journal of Arid Land, 7(5): 687–695.

    Article  Google Scholar 

  • Lioubimtseva E, Henebry G M. 2009. Climate and environmental change in arid Central Asia: Impacts, vulnerability, and adaptations. Journal of Arid Environments, 73(11): 963–977.

    Article  Google Scholar 

  • Luthcke S B, Arendt A A, Rowlands D D, et al. 2008. Recent glacier mass changes in the Gulf of Alaska region from GRACE mascon solutions. Journal of Glaciology, 54(188): 767–777.

    Article  Google Scholar 

  • Matsuo K, Heki K. 2010. Time-variable ice loss in Asian high mountains from satellite gravimetry. Earth and Planetary Science Letters, 290(1–2): 30–36.

    Article  Google Scholar 

  • Plaut G, Vautard R. 1994. Spells of low-frequency oscillations and weather regimes in the Northern Hemisphere. Journal of the Atmospheric Sciences, 51(2): 210–236.

    Article  Google Scholar 

  • Rodell M, Houser P R, Jambor U, et al. 2004. The global land data assimilation system. Bulletin of the American Meteorological Society, 85(3): 381–394.

    Article  Google Scholar 

  • Sasgen I, Dobslaw H, Martinec Z, et al. 2010. Satellite gravimetry observation of Antarctic snow accumulation related to ENSO. Earth and Planetary Science Letters, 299(3–4): 352–358.

    Article  Google Scholar 

  • Schrama E J O, Wouters B, Rietbroek R. 2014. A mascon approach to assess ice sheet and glacier mass balances and their uncertainties from GRACE data. Journal of Geophysical Research: Solid Earth, 119(7): 6048–6066.

    Google Scholar 

  • Sorg A, Bolch T, Stoffel M, et al. 2012. Climate change impacts on glaciers and runoff in Tien Shan (Central Asia). Nature Climate Change, 2(10): 725–731.

    Article  Google Scholar 

  • Stocker T F, Qin D H, Plattner G-K, et al. 2013. Climate Change 2013: The Physical Science Basis. Intergovernmental Panel on Climate Change, Working Group I Contribution to the IPCC Fifth Assessment Report (AR5). New York: Cambridge University Press.

  • Swenson S, Chambers D, Wahr J. 2008. Estimating geocenter variations from a combination of GRACE and ocean model output. Journal of Geophysical Research: Solid Earth, 113(B8): B08410.

    Article  Google Scholar 

  • Swenson S, Wahr J. 2006. Post-processing removal of correlated errors in GRACE data. Geophysical Research Letters, 33(8): L08402.

    Article  Google Scholar 

  • Tapley B D, Bettadpur S, Ries J C, et al. 2004a. GRACE measurements of mass variability in the Earth system. Science, 305(5683): 503–505.

    Article  Google Scholar 

  • Tapley B D, Bettadpur S, Watkins M, et al. 2004b. The gravity recovery and climate experiment: Mission overview and early results. Geophysical Research Letters, 31(9): L09607.

    Article  Google Scholar 

  • Unal Y S, Ghil M. 1995. Interannual and interdecadal oscillation patterns in sea level. Climate Dynamics, 11(5): 255–278.

    Article  Google Scholar 

  • Unger-Shayesteh K, Vorogushyn S, Farinotti D, et al. 2013. What do we know about past changes in the water cycle of Central Asian headwaters? A review. Global and Planetary Change, 110: 4–25.

    Article  Google Scholar 

  • Vautard R, Ghil M. 1989. Singular spectrum analysis in nonlinear dynamics, with applications to paleoclimatic time series. Physica D: Nonlinear Phenomena, 35(3): 395–424.

    Article  Google Scholar 

  • Vautard R, Yiou P, Ghil M. 1992. Singular-spectrum analysis: A toolkit for short, noisy chaotic signals. Physica D: Nonlinear Phenomena, 58(1–4): 95–126.

    Article  Google Scholar 

  • Velicogna I, Wahr J. 2006. Measurements of time-variable gravity show mass loss in Antarctica. Science, 311(5768): 1754–1756.

    Article  Google Scholar 

  • Velicogna I, Wahr J. 2013. Time-variable gravity observations of ice sheet mass balance: Precision and limitations of the GRACE satellite data. Geophysical Research Letters, 40(12): 3055–3063.

    Article  Google Scholar 

  • Wahr J, Molenaar M, Bryan F. 1998. Time variability of the Earth’s gravity field: Hydrological and oceanic effects and their possible detection using GRACE. Journal of Geophysical Research: Solid Earth, 103(B12): 30205–30229.

    Article  Google Scholar 

  • Wouters B, Chambers D, Schrama E J O. 2008. GRACE observes small-scale mass loss in Greenland. Geophysical Research Letters, 35(20): L20501.

    Article  Google Scholar 

  • Xu L G, Zhou H F, Du L, et al. 2015. Precipitation trends and variability from 1950 to 2000 in arid lands of Central Asia. Journal of Arid Land, 7(4): 514–526.

    Article  Google Scholar 

  • Yao T D, Wang Y Q, Liu S Y, et al. 2004. Recent glacial retreat in High Asia in China and its impact on water resource in Northwest China. Science in China Series D: Earth Sciences, 47(12): 1065–1075.

    Article  Google Scholar 

  • Yao T D, Thompson L, Yang W, et al. 2012. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nature Climate Change, 2(9): 663–667.

    Article  Google Scholar 

  • Yi S, Sun W K. 2014. Evaluation of glacier changes in high-mountain Asia based on 10 year GRACE RL05 models. Journal of Geophysical Research: Solid Earth, 119(3): 2504–2517.

    Google Scholar 

Download references

Acknowledgments

This work was funded by the National Basic Research Program of China (2012CB957703, 2013CB733301), and the National Natural Science Foundation of China (41274025, 41174064). Cordial thanks should be extended to the Center for Space Research (CSR) at the University of Texas at Austin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuandong Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, C., Lu, Y., Shi, H. et al. Spatial and temporal patterns of the inter-annual oscillations of glacier mass over Central Asia inferred from Gravity Recovery and Climate Experiment (GRACE) data. J. Arid Land 9, 87–97 (2017). https://doi.org/10.1007/s40333-016-0021-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40333-016-0021-z

Keywords

Navigation