Skip to main content

Arbuscular mycorrhizal fungal association in Asteraceae plants growing in the arid lands of Saudi Arabia

Abstract

The present research was undertaken to explor the possibility of arbuscular mycorrhizal (AM) association with Asteraceae plants in the arid lands of Saudi Arabia (Al-Ghat, Buraydah, Thumamah and Huraymila). AM fungal colonization in the roots, spore numbers in the rhizosphere soil, fungal species diversity and correlation between AM properties and soil properties were determined. The highest colonization was in Conyza bonariensis (65%) from Al-Ghat, Anthemis cotula (52%) from Buraydah and C. bonariensis (53%) from Thumamah. The lowest was in Vernonia schimperi (41%) from Al-Ghat, Pulicaria undulata (25%) from Buraydah, Acanthospermum hispidum (34%) from Thumamah, Asteriscus graveolens (22%) and V. schimperi (22%) from Huraymila. Vesicular and arbuscular colonization were also presented in all plant species examined. The number of spores were 112–207 in Al-Ghat, 113–133 in Buraydah, 87–148 in Thumamah and 107–158 in Huraymila. Funneliformis mosseae, Glomus etunicatum, G. fasciculatum and G. aggregatum were identified. Relative frequency of AM fungal species varied widely and was irrespective of location and plant species. Diversity index varied with the rhizosphere soils of different plant species at various locations. Soil properties varied with locations and no distinct correlations were observed among the soil properties, root colonization and the number of spores. The results of the present study specified the association of AM fungi in different plants of Asteraceae and its significance in the ecological functioning of annual plants in the punitive environments of the rangelands in Saudi Arabia.

This is a preview of subscription content, access via your institution.

References

  • Abbott L K, Robson A D. 1991. Factors influencing the formation of arbuscular mycorrhiza. Agriculture, Ecosystem and Environment, 35: 121–150.

    Article  Google Scholar 

  • Al-Farhan A H. 1999. A phytogeographical analysis of the floristic elements in Saudi Arabia. Pakistan Journal of Biological Sciences, 2: 702–711.

    Article  Google Scholar 

  • Allen M F. 2001. Modeling arbuscular mycorrhizal infection: is % infection an appropriate variable? Mycorrhiza, 10: 255–258.

    Article  Google Scholar 

  • Al-Qarawi A A, Abdel-Fattah G M, Rowaily S L, et al. 2009. Effect of arbuscular mycorrhizal (AM) fungi on some range plants in Thumama, in Riyadh region, Saudi Arabia. Journal of King Saud University (Agricultural Science), 21: 67–86.

    Google Scholar 

  • Auge R M. 2001. Water relations, drought and VA mycorrhizal sym biosis. Mycorrhiza, 11: 3–42.

    Article  Google Scholar 

  • Azcón-Aguilar C, Barea J M. 1996. Arbuscular mycorrhizas and biological control of soil-borne plant pathogens: an overview of the mechanisms involved. Mycorrhiza, 6: 457–464.

    Article  Google Scholar 

  • Bray E A. 1997. Plant responses to water deficit. Trends in Plant Science, 2: 48–54.

    Article  Google Scholar 

  • Conrad A O, Segraves K A. 2013. Mycorrhizal colonization of Palafoxia feayi (Asteraceae) in a pyrogenic ecosystem. Mycorrhiza, 23: 243–249.

    Article  Google Scholar 

  • Dhar P P, Mridha M A U. 2006. Biodiversity of arbuscular mycorrhizal fungi in different trees of Madhupur forest, Bangladesh. Journal of Forestry Research, 17: 201–205.

    Article  Google Scholar 

  • Estrada B, Aroca R, Azcon-Aguilar C, et al. 2013. Importance of native arbuscular mycorrhizal inoculation in the halophyte Asteriscus maritimus for successful establishment and growth under saline conditions. Plant and Soil, 370: 175–185.

    Article  Google Scholar 

  • Evelin H, Kapoor R, Giri B. 2009. Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Annals of Botany, 104: 1236–1280.

    Article  Google Scholar 

  • Gerdemann J W, Nicolson T H. 1963. Spores of mycorrhizal Endogone extracted from soil by wet sieving and decanting. Transaction of British Mycological Society, 46: 235–244.

    Article  Google Scholar 

  • Ghorbani M, Khara J, Abaspoor N. 2012. Vesicular-arbuscular mycorrhizal symbioses in 7 plants and its relationship with soil factors and seasons. International Research Journal of Applied and Basic Sciences, 3: 2381–2386.

    Google Scholar 

  • Gianinazzi S, Gollotte A, Binet M N, et al. 2010. Agroecology: The key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza, 20: 519–530.

    Article  Google Scholar 

  • Grigera M S, Drijber R A, Wienhold B J. 2007. Increased abundance of arbuscular mycorrhizal fungi in soil coincides with the reproductive stages of maize. Soil Biology and Biochemistry, 39: 1401–1409.

    Article  Google Scholar 

  • Harikumar V S, Blaszkowski J, Medhanie G, et al. 2014. Arbuscular mycorrhizal fungi colonizing the plant communities in Eritrea, Northeast Africa. Applied Ecology and Environmental Research, 13: 193–203.

    Google Scholar 

  • Hemavani C, Thippeswamy B. 2013a. Arbuscular mycorrhizal fungi associated with some plants of Asteraceae in Bhadra wildlife sanctuary. International Journal of Plant, Animal and Environmental Sciences, 3: 106–110.

    Google Scholar 

  • Hemavani C, Thippeswamy B. 2013b. Association of arbuscular mycorrhizal fungi in herbaceous plants of Bhadra Wildlife Sanctuary. International Journal of Research in Botany, 3: 10–12.

    Google Scholar 

  • INVAM 2013. International culture collection of (vesicular) arbuscular mycorrhizal fungi. [2013-10-05] http://invam.wvu.edu.

    Google Scholar 

  • Johnson N C, Zak D R, Tilman D, et al. 1991. Dynamics of vesicular-arbuscular mycorrhizae during old field succession. Oecologia, 86: 349–358.

    Article  Google Scholar 

  • Johnson-Green P C, Kenkel N C, Booth T. 1995. The distribution and phenology of arbuscular mycorrhizae along an inland salinity gradient. Canadian Journal of Botany, 73: 1318–1327.

    Article  Google Scholar 

  • Koske R E, Polson W R. 1984. Are VA mycorrhizae required for sand dune stabilization? Bioscience, 34: 420–424.

    Article  Google Scholar 

  • Koske R E, Gemma J N. 1989. A modified procedure for staining roots to detect VA mycorrhizas. Mycological Research, 92: 486–505.

    Article  Google Scholar 

  • Koske R E, Gemma J N. 2002. Mycorrhizal status of two Hawaiian plant species (Asteraceae) in a tropical alpine habitat: the threatened Haleakala silversword (Argyroxiphium sandwicense subsp. macrocephalum) and the endemic Dubautia menziesii. Pacific Science, 56: 423–430.

    Article  Google Scholar 

  • Kramer P J, Boyer J S. 1995. Water Relations of Plants and Soils. San Diego: Academic Press.

    Google Scholar 

  • Kubota M, McGonigle T P, Hyakumachi M. 2005. Co-occurrence of Arum and Paris type morphologies of arbuscular mycorrhizae in cucumber and tomato. Mycorrhiza, 15: 73–77.

    Article  Google Scholar 

  • Kumar A, Bhatti S K, Aggarwal A. 2012. Biodiversity of endophytic mycorrhiza in some ornamental flowering plants of Solan, Himachal Pradesh. Biological Forum-An International Journal, 4: 45–51.

    Google Scholar 

  • Lamont B. 1982. Mechanisms for enhancing nutrient uptake in plants, with particular reference to Mediterranean South Africa and Western Australia. Botanical Review, 48: 597–689.

    Article  Google Scholar 

  • Lloyd H, Zar K H, Karr J R. 1968. On the calculation of information-theoretical measures of diversity. The American Midland Naturalist Journal, 79: 257–272.

    Article  Google Scholar 

  • Nelson D W, Sommers L E. 1996. Total carbon, organic carbon, and organic matter. In: Sparks D L, Page A L, Helmke P A. Methods of Soil Analysis. Part 3: Chemical Methods. Madison: Soil Science Society of America Inc., 539–579.

    Google Scholar 

  • O’Connor P J, Smith S E, Smith F A. 2001. Arbuscular mycorrhizal associations in the southern Simpson Desert. Australian Journal of Botany, 49: 493–499.

    Article  Google Scholar 

  • Page A L, Miller R H, Keeney D R. 1982. Methods of Soil Analysis. Part 2: Chemical and Microbiological Properties. Madison: American Society of Agronomy, Soil Science Society of America.

    Google Scholar 

  • Pande M, Tarafdar J C. 2004. Arbuscular mycorrhizal fungal diversity in neem-based agroforestry systems in Rajasthan. Applied Soil Ecology, 26: 233–241.

    Article  Google Scholar 

  • Philips J M, Hayman D S. 1970. Improved procedures for clearing roots and staining parasitic and vesicular arbuscular mycorrhizal fungi for rapid assessment for infection. Transaction of British Mycological Society, 55: 158–161.

    Article  Google Scholar 

  • Porter W M, Robson A D, Abbott L K. 1987. Field survey of the distribution of vesicular-arbuscular mycorrhizal fungi in relation to soil pH. Journal of Applied Ecology, 24: 659–662.

    Article  Google Scholar 

  • Rai M, Acharya D. 1999. Diversity of arbuscular mycorrhizae in naturally growing plants of family Asteraceae in India. Compositae Newsletter, 34: 44–49.

    Google Scholar 

  • Redecker D, Schuessler A, Stockinger H, et al. 2013. An evidence-based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota). Mycorrhiza, 23: 515–531.

    Article  Google Scholar 

  • Robson A D, Abbott L K. 1989. The Effect of Soil Acidity on Microbial Activity in Soils. In: Robson A D. Soil Acidity and Plant Growth. Sydney: Academic Press, 139–165.

    Google Scholar 

  • Rodríguez-Rodríguez R M, Herrera P, Furrazola E. 2013. Arbuscular mycorrhizal colonization in Asteraceae from white sand savannas, in Pinar del Río, Cuba. Biota Neotropica, 13: 136–140.

    Article  Google Scholar 

  • Ruiz-Lozano M J, Collados C, Barea J M, et al. 2001. Arbuscular mycorrhizal symbiosis can alleviate drought-induced nodule senescence in soybean plants. New Phytologist, 151: 493–502.

    Article  Google Scholar 

  • Schuessler A, Walker C. 2010. The Glomeromycota: a species list with new families and new genera, Edinburgh & Kew, UK: The Royal Botanic Garden; Munich, Germany: Botanische Staatssammlung Munich; Oregon, USA: Oregon State University. [2013-11-05]. http://www.amf-phylogeny.com.

    Google Scholar 

  • Schenck N C, Perez Y. 1990. Manual for identification of VA mycorrhizal fungi. Gainesville: Synergistic Publications.

    Google Scholar 

  • Shah M A, Reshi Z, Rashid I. 2008. Mycorrhizal source and neighbour identity differently influence Anthemis cotula L. invasion in the Kashmir Himalaya, India. Applied Soil Ecology, 40: 330–337.

    Article  Google Scholar 

  • Shi Z Y, Feng G, Christie P, et al. 2006. Arbuscular mycorrhizal status of spring ephemerals in the desert ecosystem of Junggar Basin, China. Mycorrhiza, 16: 269–275.

    Article  Google Scholar 

  • Simpson E H. 1949. Measurement of diversity. Nature, 163: 688.

    Article  Google Scholar 

  • Smith F A, Smith S E. 1997. Structural diversity in (vesicular)-arbuscular mycorrhizal symbioses. New Phytologist, 137: 373–388.

    Article  Google Scholar 

  • Van der Heijden M G A, Klironomos J N, Ursic M, et al. 1998. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature, 396: 69–72.

    Article  Google Scholar 

  • Wang B, Qiu Y L. 2006. Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza, 16: 299–363.

    Article  Google Scholar 

  • Warcup J H, McGee P A. 1983. The mycorrhizal association of Australian Asteraceae. New Phytologist, 95: 667–672.

    Article  Google Scholar 

  • Bai Y F, Li M, Guo S X. 2012. Development status of arbuscular mycorrhizal fungi associated with invasive plant Coreopsis grandiflora Hogg. African Journal of Microbiology Research, 6: 2779–2784.

    Article  Google Scholar 

  • Zaller J G, Saccani F, Frank T. 2011. Effects of earthworms and mycorrhizal fungi on the growth of the medicinal herb Calendula officinalis (Asteraceae). Plant, Soil and Environment, 57: 499–504.

    Google Scholar 

  • Zhang T, Tian C Y, Sun Y, et al. 2012. Dynamics of arbuscular mycorrhizal fungi associated with desert ephemeral plants in Gurbantunggut Desert. Journal of Arid Land, 4: 43–51.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed A. U. Mridha.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dhar, P.P., Al-Qarawi, A.A. & Mridha, M.A.U. Arbuscular mycorrhizal fungal association in Asteraceae plants growing in the arid lands of Saudi Arabia. J. Arid Land 7, 676–686 (2015). https://doi.org/10.1007/s40333-015-0081-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40333-015-0081-5

Keywords

  • arbuscular mycorrhizal fungi
  • arid land
  • Asteraceae
  • biodiversity
  • colonization
  • Saudi Arabia