Skip to main content

Floral traits and pollination system of Zygophyllum xanthoxylum in the managed and wild populations in an arid region of Northwest China

Abstract

Zygophyllum xanthoxylum, which belongs to Sarcozygium of Zygophyllaceae, is one of the ecologically important species in Northwest China. In order to understand the pollination system of Z. xanthoxylum, we investigated the following characteristics of this species in the Urat Desert-grassland Research Station in western Inner Mongolia of China: flowering dynamics, pollen viability, pollen limitation, floral visitors and breeding system. The results showed that the flowering period and flowering peak were different between the wild and managed populations, being longer in the managed population. Z. xanthoxylum was pollen-limited, and pollen limitation was more intense in the wild population than in the managed population. Chalicodoma deserticola (Hymenoptera) was found to be the most frequent pollinator in the wild population, while Anthophora fulvitarsis (Hymenoptera) was the most frequent and effective visitor in the managed population. Out-crossing was dominant in the breeding system and self-pollination just played an assistant role to assure the reproduction of Z. xanthoxylum.

This is a preview of subscription content, access via your institution.

References

  • Aizen M A, Feinsinger P. 1994. Forest fragmentation, pollination, and plant reproduction in a chaco dry forest, Argentina. Ecology, 75: 330–351.

    Article  Google Scholar 

  • Aizen M A, Ashworth L, Galetto L. 2002. Reproductive success in fragmented habitats: Do compatibility systems and pollination specialization matter? Journal of Vegetation Science, 13: 885–892

    Article  Google Scholar 

  • Aizen M A, Harder L D. 2007. Expanding the limits of the pollen-limitation concept: effects of pollen quantity and quality. Ecology, 88: 271–281.

    Article  Google Scholar 

  • Arias-Cóyotl E, Stoner K E, Casas A. 2006. Effectiveness of bats as pollinators of Stenocereus stellatus (Cactaceae) in wild, managed in situ, and cultivated population in La Mixteca Baja, Central Mexico. American Journal of Botany, 93: 1675–1683.

    Article  Google Scholar 

  • Ashman T L, Knight T M, Steets J A, et al. 2004. Pollen limitation of plant reproduction: ecological and evolutionary causes and consequences. Ecology, 85: 2408–2421.

    Article  Google Scholar 

  • Ashman T L, Morgan M T. 2004. Explaining phenotypic selection on plant attractive characters: male function, gender balance or ecological context? Proceedings of the Royal Society: Biological Sciences, 271: 553–559.

    Article  Google Scholar 

  • Beattie A J. 1971. Technique for study of insect-borne pollen. Pan-Pacific Entomologist, 47: 82.

    Google Scholar 

  • Blancas J, Casas A, Lira R, et al. 2009. Traditional management and morphological patterns of Myrtillocactus schenkii (Cactaceae) in the Tehuacán Valley, central Mexico. Economic Botany, 63: 375–387.

    Article  Google Scholar 

  • Bond W J. 1994. Do mutualisms matter: assessing the impact of pollinator and disperser disruption on plant extinction. Philosophical Transactions of the Royal Society: Biological Sciences, 344: 83–90.

    Article  Google Scholar 

  • Brenda O V, Alejandro C, Alfonso V B. 2006. Reproductive biology in wild and silvicultural managed populations of Escontria chiotilla (Cactaceae) in the Tehuacán Valley, Central Mexico. Genetic Resources and Crop Evolution, 53: 277–287.

    Article  Google Scholar 

  • Burd M. 1994. Bateman’s principle and plant reproduction: the role of pollen limitation in fruit and seed set. Botanical Review, 60: 83–139.

    Article  Google Scholar 

  • Byers D L. 1995. Pollen quantity and quality as explanations for low seed set in small populations exemplified by Eupatorium (Asteraceae). American Journal of Botany, 82: 1000–1006.

    Article  Google Scholar 

  • Camargo E, Rodrigues L C, Araujo A C. 2011. Pollination biology and reproduction of Seemannia sylvatica (Kunth) Hanstein (Gesneriaceae) in the Serra da Bodoquena National Park, Mato Grosso do Sul. Biota Neotropica, 4: 125–130.

    Article  Google Scholar 

  • Casas A, Otero-Arnaiz A, Pérez-Negrón E, et al. 2007. In situ management and domestication of plants in Mesoamerica. Annals of Botany, 100: 1101–1115.

    Article  Google Scholar 

  • Casper B B, Niesenbaum R A. 1993. Pollen versus resource limitation of seed production: a reconsideration. Current Science, 65: 210–214.

    Google Scholar 

  • Chen M, Liu L L, Zhang L, et al. 2012. Pollination ecological studies of Tamarix chinensis in the middle reaches of Heihe River and Yantai seashore. Chinese Bulletin of Botany, 47: 264–270.

    Google Scholar 

  • Chen M, Zhao X Y. 2014. Comparative pollination biology of Tamarix ramosissima in wild and managed populations. Chinese Journal of Ecology, 33: 3169–3175. (in Chinese)

    Google Scholar 

  • Chen M L. 2009. Comparative reproductive biology of Primula merrilliana Schltr. and P. cicutariifolia Pax. Plant Systematics and Evolution, 278: 23–32.

    Article  Google Scholar 

  • Cosacov A, Nattero J, Cocucci A A. 2008. Variation of pollinator assemblages and pollen limitation in a locally specialized system: the oil-producing Nierembergia linariifolia (Solanaceae). Annals of Botany, 102: 723–734.

    Article  Google Scholar 

  • Dafni A. 1992. Pollination Ecology: A Practical Approach. New York: Oxford University Press, 1–57.

    Google Scholar 

  • Galen C, Newport M E A. 1988. Pollination quality, seed set, and flower traits in Polemonium viscosum: complementary effects of variation in flower scent and size. American Journal of Botany, 75: 900–905.

    Article  Google Scholar 

  • Gómez J M, Abdelaziz M, Lorite J, et al. 2010. Changes in pollinator fauna cause spatial variation in pollen limitation. Journal of Ecology, 98: 1243–1252.

    Article  Google Scholar 

  • Harder L, Barrett S, Cole W. 2000. The mating consequences of sexual segregation within inflorescences of flowering plants. Proceedings of the Royal Society: Biological Sciences, 267: 315–320.

    Article  Google Scholar 

  • Hill L M, Brody A K, Tedesco C L. 2008. Mating strategies and pollen limitation in a globally threatened perennial Polemonium vanbruntiae. Acta Oecologica-International Journal of Ecology, 33: 314–323.

    Article  Google Scholar 

  • Hu X K, Li Y, Li D L, et al. 2012. Spatial distribution pattern of desert plants Zygophyllum xanthoxylum. Journal of Southwest Forestry University, 32(4): 61–65. (in Chinese)

    Google Scholar 

  • Janzen D H. 1977. A note on optimal mate selection in plants. American Naturalist, 111: 365–371.

    Article  Google Scholar 

  • Jarne P, Charlesworth D. 1976. The evolution of the selfing rate in functionally hermaphrodite plants and animals. Annual Review of Ecology and Systematics, 24: 441–466.

    Article  Google Scholar 

  • Kawakita A. 2010. Evolution of obligate pollination mutualism in the tribe Phyllantheae (Phyllanthaceae). Plant Species Biology, 25: 3–19.

    Article  Google Scholar 

  • Kearns C A, Inouye D W, Waser N M. 1998. Endangered mutualisms: the conservation of plant-pollinator interactions. Annual Review of Ecology and Systematics, 29: 83–112.

    Article  Google Scholar 

  • Kevan P G, Clark E A, Thomas V G. 1990. Insect pollination and sustainable agriculture. American Journal of Alternative Agriculture, 5: 12–22.

    Article  Google Scholar 

  • Knight T M, Steets J A, Vamosi J C, et al. 2005. Pollen limitation of plant reproduction: ecological and evolutionary causes and consequences. Annual Review of Ecology Evolution and Systematics, 36: 467–497.

    Article  Google Scholar 

  • Knight T M, Steet J A, Ashman T L. 2006. A quantitative synthesis of pollen supplementation experiments highlights the contribution of resource reallocation to estimates of pollen limitation. American Journal of Botany, 93: 271–277.

    Article  Google Scholar 

  • Kuchlein J H, Ellis W N. 1997. Climate-induced changes in the microlepidoptera fauna of the Netherlands and the implications for nature conservation. Journal of Insect Conservation, 1: 73–80.

    Article  Google Scholar 

  • Kudo G. 1993. Relationships between flowering time and fruit set of the entomophilous alpine shrub, Rhododendron aureum (Ericaceae), inhabiting snow patches. American Journal of Botany, 80: 1300–1304.

    Article  Google Scholar 

  • Larson B M H, Barrett S C H. 2000. A comparative analysis of pollen limitation in flowering plants. Biological Journal of the Linnean Society, 69: 503–520.

    Article  Google Scholar 

  • Li X W, Teng H K. 1990. The Flora of China. Beijing: Science Press, 140–142. (in Chinese)

    Google Scholar 

  • Li Y, Li D L, Zhu G Q, et al. 2013. Study on the niche of Zygophyllum xanthoxylum community in Minqin desert area. Journal of Arid Land Resources and Environment, 27(1): 120–125. (in Chinese)

    Google Scholar 

  • Liu Y X. 1987. Chinese Desert Flora. Beijing: Science Press, 318–320. (in Chinese)

    Google Scholar 

  • Lloyd D G. 1980. Demographic factors and mating patterns in angiosperms. In: Solbrig O T. Demography and Evolution in Plant Populations. Berkeley: University of California Press, 67–88.

    Google Scholar 

  • Ma Q, Yue L J, Zhang J L, et al. 2012. Sodium chloride improves photosynthesis and water status in the succulent xerophyte Zygophyllum xanthoxylum. Tree Physiology, 32: 4–13.

    Article  Google Scholar 

  • McCarty J P. 2001. Ecological consequences of recent climate change. Conservation Biology, 15: 320–331.

    Article  Google Scholar 

  • Michael A W, Margaret T E, Robert S B. 2003. Conservation impact of climatic variability on pollination of the federally endangered plant, Clematis socialis (Ranunculaceae). Southeastern Naturalist, 2: 11–24.

    Article  Google Scholar 

  • Ortíz F E, Stoner K, Pérez-Negrón E, et al. 2010. Pollination biology of Myrtillocactus schenckii (Cactaceae) in wild and managed populations of the Tehuacán Valley, México. Journal of Arid Environments, 74: 897–904.

    Article  Google Scholar 

  • Rathcke B. 1983. Competition and facilitation among plants for pollinators. In: Real L A. Pollination Biology. New York: Academic Press, 305–329.

    Chapter  Google Scholar 

  • Revel N, Alvarez N, Gibernau M, et al. 2012. Investigating the relationship between pollination strategies and the size-advantage model in zoophilous plants using the reproductive biology of Arum cylindraceum and other European Arum species as case studies. Arthropod-Plant Interactions, 6: 35–44.

    Article  Google Scholar 

  • Rodríguez-Oseguera A G, Casas A, Herrerías-Diego Y, et al. 2013. Effect of habitat disturbance on pollination biology of the columnar cactus Stenocereus quevedonis at landscape-level in central Mexico. Plant Biology, 15: 573–582.

    Article  Google Scholar 

  • Saetersdal M, Birks H J B. 1997. A comparative ecological study of Norwegian mountain plants in relation to possible future climate change. Journal of Biogeography, 24: 127–152.

    Article  Google Scholar 

  • Spira T P, Snow A A, Whigham D F, et al. 1992. Flower visitation, pollen deposition, and pollen-tube competition in Hibiscus moscheutos (Malvaceae). American Journal of Botany, 79: 428–433.

    Article  Google Scholar 

  • Spira T P. 2001. Plant-pollinator interactions: A threatened mutualism with implications for the ecology and management of rare plants. Natural Areas Journal, 21: 78–88.

    Google Scholar 

  • Wesselingh R A. 2007. Pollen limitation meets resource allocation: towards a comprehensive methodology. New Phytologist, 174: 26–37.

    Article  Google Scholar 

  • Wiemer A P, Sérsic A N, Marino S, et al. 2012. Functional morphology and wasp pollination of two South American asclepiads (Asclepiadoideae-Apocynaceae). Annals of Botany, 109: 77–93.

    Article  Google Scholar 

  • Wilson P, Thomson J D, Stanton M L. 1994. Beyond floral Batemania: gender biases in selection for pollination success. American Naturalist, 143: 283–296.

    Article  Google Scholar 

  • Wu G Q, Wang Q, Bao A K, et al. 2011a. Amiloride reduces sodium transport and accumulation in the succulent xerophyte Zygophyllum xanthoxylum under salt conditions. Biological Trace Element Ressearch, 139: 356–367.

    Article  Google Scholar 

  • Wu G Q, Xi J J, Wang Q, et al. 2011b. The ZxNHX gene encoding tonoplast Na+/H+ antiporter from the xerophyte Zygophyllum xanthoxylum plays important roles in response to salt and drought. Journal of Plant Physiology, 168: 758–767.

    Article  Google Scholar 

  • Yue L J, Li S X, Ma Q, et al. 2012. NaCl stimulates growth and alleviates water stress in the xerophyte Zygophyllum xanthoxylum. Journal of Arid Environments, 87: 153–160.

    Article  Google Scholar 

  • Zapata T R, Arroyo M T K. 1978. Plant reproductive ecology of a secondary deciduous tropical forest in Venezuela. Biotropica, 10: 221–230.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Chen.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, M., Zhao, X., Zuo, X. et al. Floral traits and pollination system of Zygophyllum xanthoxylum in the managed and wild populations in an arid region of Northwest China. J. Arid Land 7, 488–500 (2015). https://doi.org/10.1007/s40333-015-0042-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40333-015-0042-z

Keywords

  • Zygophyllum xanthoxylum
  • pollination
  • pollen limitation
  • floral visitor
  • fruit set
  • seed set
  • breeding system