Skip to main content
Log in

A spatial-explicit dynamic vegetation model that couples carbon, water, and nitrogen processes for arid and semiarid ecosystems

  • Published:
Journal of Arid Land Aims and scope Submit manuscript

Abstract

Arid and semiarid ecosystems, or dryland, are important to global biogeochemical cycles. Dryland’s community structure and vegetation dynamics as well as biogeochemical cycles are sensitive to changes in climate and atmospheric composition. Vegetation dynamic models has been applied in global change studies, but the complex interactions among the carbon (C), water, and nitrogen (N) cycles have not been adequately addressed in the current models. In this study, a process-based vegetation dynamic model was developed to study the responses of dryland ecosystems to environmental changes, emphasizing on the interactions among the C, water, and N processes. To address the interactions between the C and water processes, it not only considers the effects of annual precipitation on vegetation distribution and soil moisture on organic matter (SOM) decomposition, but also explicitly models root competition for water and the water compensation processes. To address the interactions between C and N processes, it models the soil inorganic mater processes, such as N mineralization/immobilization, denitrification/nitrification, and N leaching, as well as the root competition for soil N. The model was parameterized for major plant functional types and evaluated against field observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ackerman T L. 1979. Germination and survival of perennial plant species in the Mojave Desert. The Southwestern Naturalist, 24: 399–408.

    Article  Google Scholar 

  • Aguiar M R, Sala O E. 1999. Patch structure, dynamics and implications for the functioning of arid ecosystems. Trends in Ecology & Evolution, 14: 273–277.

    Article  Google Scholar 

  • Allen-Diaz B, Chapin F S, Diaz S, et al. 1996. Rangelands in a changing climate: impacts, adaptations and mitigation. In: Watson R T, Zinyowera M C, Moss R H, et al. Climate Change 1995 Impacts, Adaptation and Mitigation, Contribution of Working Group II to the Second Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 131–158.

    Google Scholar 

  • Austin A T, Yahdjian L, Stark J M, et al. 2004. Water pulses and biogeochemical cycles in arid and semiarid ecosystems. Oecologia, 141: 221–235.

    Article  Google Scholar 

  • Braswell B H, Schimel D S, Linder E, et al. 1997. The response of global terrestrial ecosystems to interannual temperature variability. Science, 278: 870–873.

    Article  Google Scholar 

  • Canfield R H. 1941. Application of the line interception method in sampling range vegetation. Journal of Forestry, 39: 388–394.

    Google Scholar 

  • Chiba Y. 1990. Plant form analysis based on the pipe model theory I. A statical model within the crown. Ecological Research, 5: 207–220.

    Google Scholar 

  • Cook E R, Woodhouse C A, Eakin C M, et al. 2004. Long-term aridity changes in the western United States. Science, 306: 1015–1018.

    Article  Google Scholar 

  • Drake B G, Gonzàlez-Meler M A, Long S P. 1997. More efficient plants: a consequence of rising atmospheric CO2? Annual Review of Plant Physiology and Plant Molecular Biology, 48: 609–639.

    Article  Google Scholar 

  • Ehlers W, Hamblin A P, Tennant D, et al. 1991. Root system parameters determining water uptake of field crops. Irrigation Science, 12: 115–124.

    Article  Google Scholar 

  • English M, Raja S N. 1996. Perspectives on deficit irrigation. Agricultural Water Management, 32: 1–14.

    Article  Google Scholar 

  • Feddes R A, Raats P A C. 2004. Parameterizing the soil-water-plant root system. In: Feddes R A, de Rooij G H, Van Dam J C. Proceedings of the Unsaturated Zone Modeling: Progress, Challenges and Applications. Dordrecht: Kluwer Academic Publishers, 95–141.

    Google Scholar 

  • Foley J A, Prentice I C, Ramankutty N, et al. 1996. An integrated biosphere model of land surface processes, terrestrial C balance, and vegetation dynamics. Global Biogeochemical Cycles, 10: 603–628.

    Article  Google Scholar 

  • Friend A D, Stevens A K, Knox R G, et al. 1997. A process-based, terrestrial biosphere model of ecosystem dynamics (Hybrid v3.0). Ecological Modeling, 95: 249–287.

    Article  Google Scholar 

  • Gale M R, Grigal D F. 1987. Vertical root distributions of northern tree species in relation to successional status. Canadian Journal of Forest Research, 17: 829–834.

    Article  Google Scholar 

  • Gutierrez J R, Whitford W G. 1987. Chihuahuan desert annuals: importance of water and nitrogen. Ecology, 68: 2032–2045.

    Article  Google Scholar 

  • Hall S J, Huber D, Grimm N B. 2008. Soil N2O and NO emissions from an arid, urban ecosystem. Journal of Geophysical Research, 113, G01016, doi: 10.1029/2007JG000523.

    Article  Google Scholar 

  • Hasegawa S, Yoshida S. 1982. Water uptake by dryland rice root system during soil drying cycle. Soil Science and Plant Nutrition, 28: 191–204.

    Article  Google Scholar 

  • Haxeltine A, Prentice I C. 1996. BIOME3: an equilibrium terrestrial biosphere model based on ecophysiological constraints, resource availability, and competition among plant functional types. Global Biogeochemical Cycles, 10: 693–709.

    Article  Google Scholar 

  • Houghton R A, Hobbie J E, Melillo J M, et al. 1983. Changes in the C content of terrestrial biota and soils between 1860 and 1980: a net release of CO2 to the atmosphere. Ecological Monographs, 53: 235–262.

    Article  Google Scholar 

  • Ingle J D J, Crouch S R. 1988. Spectrochemical Analysis. New Jersey: Prentice Hall.

    Google Scholar 

  • IPCC. 2012. Managing the risks of extreme events and disasters to advance climate change adaptation. In: Field C B, Barros V, Stocker T F, et al. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change. Cambridge and New York: Cambridge University Press, 582.

    Google Scholar 

  • Jackson R B, Mooney H A, Schulze E D A. 1997. A global budget for fine root biomass, surface area, and nutrient contents. Proceedings of the National Academy of Sciences of the United States of America, 94: 7362–7366.

    Article  Google Scholar 

  • Keeling C D, Piper S C, Bacastow R B, et al. 2001. Exchanges of atmospheric CO2 and 13CO2 with the terrestrial biosphere and oceans from 1978 to 2000. I. Global aspects. In: Ehleringer J R, Cerling T E, Dearing M D. Scripps Institution of Oceanography Reference No. 01-06. UC San Diego: Scripps Institution of Oceanography, 1–28.

    Google Scholar 

  • Kemp P R, Reynolds J F, Pachepsky Y, et al. 1997. A comparative modeling study of soil water dynamics in a desert ecosystem. Water Resources Research, 33: 73–90.

    Article  Google Scholar 

  • Krinner G, Viovy N, de Noblet-Ducoudré N, et al. 2005. A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Global Biogeochemical Cycles, 19, GB1015, doi: 10.1029/2003GB002199.

    Article  Google Scholar 

  • Ladwig L M, Collins S L, Swann A L, et al. 2012. Above- and belowground responses to nitrogen addition in a Chihuahuan Desert grassland. Oecologia, 169: 177–185.

    Article  Google Scholar 

  • Lal R. 2001. Potential of desertification control to sequester carbon and mitigate the greenhouse effect. Climatic Change, 51: 35–72.

    Article  Google Scholar 

  • Law B E, Loescher H W, Boden T A, et al. 2005. Ameriflux Site Evaluation and Recommendations for Network Enhancement. Oak Ridge: Oak Ridge National Laboratory. [2012-3-21]. http://public.ornl.gov/ameriflux.

    Google Scholar 

  • Leib B G, Caspari H W, Redulla C A, et al. 2006. Partial rootzone drying and deficit irrigation of ‘Fuji’ apples in a semi-arid climate. Irrigation Science, 24: 85–99.

    Article  Google Scholar 

  • Li L H, Luo G P, Chen X, et al. 2011. Modelling evapotranspiration in a Central Asian desert ecosystem. Ecological Modelling, 222: 3680–3691.

    Article  Google Scholar 

  • Lin B L, Sakoda A, Shibasaki R, et al. 2000. Modeling a global biogeochemical nitrogen cycle in terrestrial ecosystems. Ecological Modelling, 135: 89–110.

    Article  Google Scholar 

  • Lohse K A, Hope D, Sponseller R A, et al. 2008. Atmospheric deposition of nutrients across a desert city. Science of the Total Environment, 402: 95–105.

    Article  Google Scholar 

  • Luo T X. 1996. Patterns of net primary productivity for Chinese major forest types and their mathematical models. PhD Dissertation. Beijing: Chinese Academy of Sciences.

    Google Scholar 

  • Manabe S, Broccoli A J. 1990. Mountains and arid climates of middle latitudes. Science, 247: 192–194.

    Article  Google Scholar 

  • Martin J F, Reddy K R. 1984. Interaction and spatial distribution of wetland nitrogen processes. Ecological Modelling, 105: 1–21.

    Article  Google Scholar 

  • Montaño N M, García-Oliva F, Jaramillo V J. 2007. Dissolved organic carbon affects soil microbial activity and nitrogen dynamics in a Mexican tropical deciduous forest. Plant and Soil, 295: 265–277.

    Article  Google Scholar 

  • Nachtergaele F, van Velthuizen H, Verelst L. 2008. Harmonized World Soil Database. Rome: Food and Agriculture Organization of the United Nations and Laxenburg: International Institute for Applied Systems Analysis.

    Google Scholar 

  • National Aeronautics and Space Administration. 2008. ASTER Global DEM. Washington DC: National Aeronautics and Space Administration. [2012-3-21]. http://gdex.cr.usgs.gov/gdex/.

    Google Scholar 

  • Notaro M. 2008. Response of the mean global vegetation distribution to interannual climate variability. Climate Dynamics, 30: 845–854.

    Article  Google Scholar 

  • Parton W J, Stewart J W B, Cole C V. 1988. Dynamics of C, N, P and S in grassland soils: a model. Biogeochemistry, 5: 109–131.

    Article  Google Scholar 

  • Passioura J B. 1985. Roots and water economy of wheat. In: Day W, Atkin R K. Wheat Growth and Modelling. New York: Plenum Press, 407.

    Google Scholar 

  • Quevedo D I, Frances F. 2008. A conceptual dynamic vegetation-soil model for arid and semiarid zones. Hydrology and Earth System Sciences, 12: 1175–1187.

    Article  Google Scholar 

  • Reynolds J F, Kemp P R, Tenhunen J D. 2000. Effects of long-term rainfall variability on evapotranspiration and soil water distribution in the Chihuahuan Desert: a modeling analysis. Plant Ecology, 150: 145–159.

    Article  Google Scholar 

  • Reynolds J F, Smith D M S, Lambin E F, et al. 2007. Global desertification: building a science for dryland development. Science, 316: 847–851.

    Article  Google Scholar 

  • Rotenberg E, Yakir D. 2010. Contribution of semi-arid forests to the climate system. Science, 327: 451–454.

    Article  Google Scholar 

  • Running S W, Coughlan J C. 1988. A general model of forest ecosystem processes for regional applications I. Hydrologic balance, canopy gas exchange and primary production processes. Ecological Modeling, 42: 125–154.

    Google Scholar 

  • Scheffer M, Carpenter S, Foley J A, et al. 2001. Catastrophic shifts in ecosystems. Nature, 413: 591–596.

    Article  Google Scholar 

  • Schimel J P, Weintraub M N. 2003. The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: a theoretical model. Soil Biology and Biochemistry, 35: 549–563.

    Article  Google Scholar 

  • Shao P, Zeng X D. 2011. The impact of interannual climate variability on the mean global vegetation distribution. Acta Ecologica Sinica, 31(6): 1494–1505.

    Google Scholar 

  • Shaw M R, Zavaleta E S, Chiariello N R, et al. 2002. Grassland responses to global environmental changes suppressed by elevated CO2. Science, 298: 1987–1990.

    Article  Google Scholar 

  • Shen W J, Wu J G, Kemp P R, et al. 2005. Simulating the dynamics of primary productivity of a Sonoran ecosystem: model parameterization and validation. Ecological Modelling, 189: 1–24.

    Article  Google Scholar 

  • Shen W J, Reynolds J F, Hui D F. 2009. Responses of dryland soil respiration and soil carbon pool size to abrupt vs. gradual and individual vs. combined changes in soil temperature, precipitation, and atmospheric CO2: a simulation analysis. Global Change Biology, 15: 2274–2294.

    Article  Google Scholar 

  • Shinozaki K, Yoda K, Hozumi K, et al. 1964. A quantitative analysis of plant form—the pipe model theory: I. basic analyses. Japanese Journal of Ecology, 14: 97–105.

    Google Scholar 

  • Šimůnek J, Šejna J, van Genuchten M Th. 1999. The Hydrus-2D Software Package for Simulating Two-dimensional Movement of Water, Heat, and Multiple Solutes in Variably Saturated Media. Version 2.0, IGWMC-TPS-53. Colorado: International Ground Water Modeling Center, Colorado School of Mines, 1–251.

    Google Scholar 

  • Sitch S, Smith B, Prentice I C, et al. 2003. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Global Change Biology, 9: 161–185.

    Article  Google Scholar 

  • Smith S D, Huxman T E, Zitzer S F, et al. 2000. Elevated CO2 increases productivity and invasive species success in an arid ecosystem. Nature, 408: 79–82.

    Article  Google Scholar 

  • Sorg A, Bolch T, Stoffel M, et al. 2012. Climate change impacts on glaciers and runoff in Tien Shan (Central Asia). Nature Climate Change, 2: 725–731.

    Article  Google Scholar 

  • Stikic R, Popovic S, Srdic M, et al. 2003. Partial root drying (PRD): a new technique for growing plants that saves water and improves the quality of fruit. Bulgarian Journal of Plant Physiology, 29: 164–171.

    Google Scholar 

  • Taylor H M, Klepper B. 1978. The role of rooting characteristics in the supply of water to plants. Advances in Agronomy, 30: 99–128.

    Article  Google Scholar 

  • Thornley J H M. 1991. A transport-resistance model of forest growth and partitioning. Annals of Botany, 68: 211–226.

    Google Scholar 

  • Thornton P E, Running S W. 1999. An improved algorithm for estimating incident daily solar radiation from measurements of temperature, humidity, and precipitation. Agricultural and Forest Meteorology, 93: 211–228.

    Article  Google Scholar 

  • Thornton P E, Running S W, Hunt E R. 2005. Biome-BGC: Terrestrial Ecosystem Process Model, Version 4.1.1. Data Model [Internet]. Oak Ridge: Oak Ridge National Laboratory Distributed Active Archive Center. [2012-6-8]. http://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=805.

    Google Scholar 

  • Tian H Q, Melillo J, Lu C Q, et al. 2011. China’s terrestrial carbon balance: contributions from multiple global change factors. Global Biogeochemical Cycles, 25, GB1007, doi: 10.1029/2010GB003838.

    Article  Google Scholar 

  • van der Ploeg R R, Beese F, Strebel O, et al. 1978. The water balance of a sugar beet crop: a model and some experimental evidence. Journal of Plant Nutrition and Soil Science, 141: 313–328.

    Article  Google Scholar 

  • Vasek F C. 1980. Creosote Bush: Long-lived clones in the Mojave Desert. American Journal of Botany, 67: 246–255.

    Article  Google Scholar 

  • Walker B H, Langridge J L. 1996. Modelling plant and soil water dynamics in semi-arid ecosystems with limited site data. Ecological Modelling, 87: 153–167.

    Article  Google Scholar 

  • Wohlfahrt G, Fenstermaker L F, Arnone J A. 2008. Large annual net ecosystem CO2 uptake of a Mojave Desert ecosystem. Global Change Biology, 14: 1475–1487.

    Article  Google Scholar 

  • Xu G Q, Wei W S. 2004. Climate change of Xinjiang and its impact on eco-enviroment. Arid Land Geogrophy, 27(1): 14–18.

    Google Scholar 

  • Xu H, Li Y, Xu G Q, et al. 2007. Ecophysiological response and morphological adjustment of two Central Asian desert shrubs towards variation in summer precipitation. Plant, Cell & Environment, 30: 399–409.

    Article  Google Scholar 

  • Yang R Q, Friedl M A, Ni W G. 2001. Parameterization of shortwave radiation fluxes for nonuniform vegetation canopies in land surface models. Journal of Geophysical Research, 106: 14275–14286.

    Article  Google Scholar 

  • Yuan X M, Wang Z Q. 1997. Studies on the NO 3 in the environment and soil. Arid Zone Research, 14(4): 52–55.

    Google Scholar 

  • Zhou X B. 2008. Responses of herbaceous plant growth and microbial activities to simulated nitrogen deposition in Gurbantunggut Desert. PhD Dissertation. Urumqi: Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 157.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, C., Li, C., Chen, X. et al. A spatial-explicit dynamic vegetation model that couples carbon, water, and nitrogen processes for arid and semiarid ecosystems. J. Arid Land 5, 102–117 (2013). https://doi.org/10.1007/s40333-013-0146-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40333-013-0146-2

Keywords

Navigation