Advertisement

Lettera Matematica

, Volume 6, Issue 1, pp 33–39 | Cite as

The importance of being “one” (or Benford’s law)

  • Marco Corazza
  • Andrea Ellero
  • Alberto Zorzi
Article
  • 26 Downloads

Abstract

In this article we give an informal presentation of the so-called Benford’s law, a counterintuitive probability distribution that describes the frequency with which the first significant digits—that is, a digit between 1 and 9—appear in sets of numbers associated with heterogeneous quantities. Unlike what might be expected, these frequencies are not equal but are decreasing, that is, 1 appears more often than 2, which appears more often than 3 and so on. After an introduction to the law, we will show how, perhaps unexpectedly, it is satisfied by the numbers generated by some sequences of powers. We will then illustrate some applications in the socio-economic field (for instance, to identify accounting or electoral fraud). Finally we will use it to analyse the tax returns of some former US presidential candidates.

Keywords

Benford’s law First significant digit Power sequences Tax evasion Vote-rigging 

References

  1. 1.
    Arshadi, L., Jahangir, A.H.: Benford’s law behavior of Internet traffic. J. Netw. Comput. Appl. 40, 194–205 (2014)CrossRefGoogle Scholar
  2. 2.
    Benford, F.: The law of anomalous numbers. Proc. Am. Philos. Soc. 78, 551–572 (1938)MATHGoogle Scholar
  3. 3.
    Corazza, M., Ellero, A., Zorzi, A.: Checking financial markets via Benford’s law: The S&P 5000 case. In: Corazza, M., Pizzi, C. (eds.) Mathematical and Statistical Methods for Actuarial Sciences and Finance, pp. 93–102. Springer, Berlin (2010)CrossRefGoogle Scholar
  4. 4.
    Diaconis, P., Freedman, D.: On rounding percentages. J. Am. Stat. Assoc. 74, 359–364 (1979)MathSciNetMATHGoogle Scholar
  5. 5.
    Diekmann, A.: Not the first digit! Using Benford’s law to detect fraudulent scientific data. J. Appl. Stat. 37, 321–329 (2007)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Gauvrit, N., Delahaye, J.-P.: Pourquoi la loi de Benford n’est pas mystérieuse. Mathématiques et Sciences Humaines 182, 7–15 (2008)CrossRefMATHGoogle Scholar
  7. 7.
    Hamming, R.: On the distribution of numbers. Bell Syst. Tech. J. 49, 1609–1625 (1970)CrossRefMATHGoogle Scholar
  8. 8.
    Hill, T.P.: A statistical derivation of the significant-digit law. Stat. Sci. 10, 354–363 (1995)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Hill, T.P.: The significant-digit phenomenon. Am. Math. Mon. 102, 322–327 (1995)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Miller S.J. (editor): Benford’s Law: Theory and Applications. Princeton University Press (2015)Google Scholar
  11. 11.
    Newcomb, S.: Note on the frequency of use of the different digits in natural numbers. Am. J. Math. 4, 39–40 (1881)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Nigrini, M.: A taxpayer compliance application of Benford’s law. J. Am. Tax. Assoc. 18, 72–91 (1996)Google Scholar
  13. 13.
    Nigrini, M.: I’ve got your number: How a mathematical phenomenon can help CPAs uncover fraud and other irregularities. J. Account. 79–83 (1999)Google Scholar
  14. 14.
    Orita, M., Moritomo, A., Niimi, T., Ohno, K.: Use of Benford’s law in drug discovery data. Drug Discov. Today 15, 328–331 (2010)CrossRefGoogle Scholar
  15. 15.
    Pérez-González, F., Abdallah, C.T., Heileman, G.L.: Benford’s law in image processing. IEEE Int Conf Image Process 405–408 (2007)Google Scholar
  16. 16.
    Phillips, T.: Simon Newcomb and “Natural Numbers” (Benford’s law). American Mathematical Society Feature Column—Monthly Essays on Mathematical Topics (2009). http://www.ams.org
  17. 17.
    Roukema, B.F.: A first-digit anomaly in the 2009 Iranian presidential election. J. Appl. Stat. 41, 164–199 (2014)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Wells, K., Chiverton, J., Partridge, M., Barry, M., Kadhem, H., Ott, B.: Quantifying the partial volume effect in PET using Benford’s law. IEEE Trans. Nucl. Sci. 54, 1616–1625 (2007)CrossRefGoogle Scholar
  19. 19.
    Zorzi, A.: An elementary proof for the Equidistribution Theorem. Math Intell 37, 1–2 (2015)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Centro P.RI.ST.EM, Università Commerciale Luigi Bocconi 2018

Authors and Affiliations

  1. 1.Dipartimento di EconomiaUniversità Ca’ Foscari VeneziaVeniceItaly
  2. 2.Dipartimento di ManagementUniversità Ca’ Foscari VeneziaVeniceItaly
  3. 3.Dipartimento di Architettura Costruzione ConservazioneUniversità IUAV di VeneziaVeniceItaly

Personalised recommendations