Skip to main content
Log in

F for Finance

From classical financial mathematics to portfolio theory and new financial products

  • Published:
Lettera Matematica

Abstract

A history of modern mathematics of finance, from the ancient times to the contemporary quantitative finance, with special attention to portfolio and options theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arrow, K.: Le role des valeurs boursières pour la répartition la meilleure des risques. Econ Colloq Int Centre Natl Rech Sci 11, 41–47 (1953). Reprinted as The role of securities in the optimal allocation of risk bearing. Rev. Econ. Stud. 31, 91–96 (1963)

  2. Arrow, K.: Insurance, risk and resource allocation. Lecture 3 in aspects of the theory of risk bearing. Yrjo Jahnsson Lectures, Helsinki, p 45–56 (1965)

    Google Scholar 

  3. Bachelier, L.: Théorie de la spéculation. Ann. Sci. l’École Norm. Supérieure Sér. 3 17, 21–86 (1900)

  4. Black, F., Scholes, M.: The pricing of options and corporate liabilities. J. Polit. Econ. 81, 637–659 (1973)

    MathSciNet  MATH  Google Scholar 

  5. Breeden, D.T.: An intertemporal asset pricing model with stochastic consumption and investment opportunities. J. Financ. Econ. 7, 265–296 (1979)

    MATH  Google Scholar 

  6. Cox, J., Ross, S., Rubinstein, M.: Option pricing: a simplified approach. J. Financ. Econ. 7, 229–263 (1979)

    MATH  Google Scholar 

  7. Cox, J., Ingersoll, J., Ross, S.: A theory of the term structure of interest rates. Econometrica 53, 385–407 (1985)

    MathSciNet  MATH  Google Scholar 

  8. De Finetti, B.: Su una impostazione alternativa della teoria collettiva del rischio, vol 2. In: Transactions of the XV International Congress of Actuaries, Mallon, New York, pp 433–443 (1957)

  9. Drèze, J.: Market allocation under uncertainty. Eur. Econ. Rev. 2, 133–165 (1971)

    Google Scholar 

  10. Hull, J., White, A.: One-factor interest-rate models and the valuation of interest-rate derivative securities. J. Financ. Quant. Anal. 28, 235–254 (1993)

    Google Scholar 

  11. Lundberg, F.: Approximerad framställning af sannolikhetsfunktionen—Återförsäkring af kollektivrisker. Akademisk afhandling. Almqvist & Wiksells, Uppsala (1903)

    Google Scholar 

  12. Markowitz, H.: Portfolio selection. J. Financ. 6, 77–91 (1952)

    Google Scholar 

  13. Markowitz, H.: Portfolio selection: efficient diversification of investments. Wiley, New York (1959)

    Google Scholar 

  14. Merton, R.: Theory of rational option pricing. Bell J. Econ. Manag. Sci. 4:141–183 (1973)

    MathSciNet  MATH  Google Scholar 

  15. Merton, R.: An intertemporal asset pricing model. Econometrica 41, 867–887 (1973)

    MathSciNet  MATH  Google Scholar 

  16. Merton, R.: Option pricing when underlying stock returns are discontinuous. J. Financ. Econ. 3, 125–144 (1976)

    MATH  Google Scholar 

  17. Ross, S.: The arbitrage theory of capital asset pricing. J. Econ. Theory 13, 341–360 (1976)

    MathSciNet  Google Scholar 

  18. Samuelson, P.A.: Rational theory of warrant pricing. Ind. Manag. Rev. 6, 13–32 (1965)

    Google Scholar 

  19. Samuelson, P.A., Merton, R.C.: A complete model of warrant pricing that maximizes utility. Ind. Manag. Rev. 10, 17–46 (1969)

    Google Scholar 

  20. Sharpe, W.: Capital asset prices: a theory of market equilibrium under conditions of risk. J. Financ. 19, 425–442 (1964)

    Google Scholar 

  21. Stoll, H.: The relationship between put and call option prices. J. Financ. 24, 801–824 (1969)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flavio Pressacco.

Additional information

For the sake of homogeneity with the other papers in this issue, we had to sacrifice some parts, although of great importance in the context of financial mathematics, of the paper originally submitted by the author. They concerned in particular the theories by Modigliani–Miller (structure of the capital of a company), Von Neumann–Morgenstern (neo-Bernoullian utility), Fama (market efficiency), Mandelbrot (fractal finance), as well as connecting sections between the quantitative approach and the economic and financial disciplines less oriented to a mathematical formalisation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pressacco, F. F for Finance. Lett Mat Int 5, 105–111 (2017). https://doi.org/10.1007/s40329-017-0171-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40329-017-0171-7

Keywords

Navigation