Skip to main content

Downward continuation of airborne gravity data based on iterative methods

Abstract

The downward continuation (DWC) of airborne gravity data usually adopts the Poisson integral equation, which is the first kind Fredholm integral equation. To improve the stability and accuracy of the DWC, based on the traditional regularization methods and Landweber iteration method, we introduce two other iterative algorithms, namely Cimmino and component averaging (CAV). In order to cooperate with the use of the iterative algorithms, in response to the discrepancy principle (DP) stopping rule, we further investigate the monotone error (ME) rule and normalized cumulative periodogram (NCP) in this paper. The numerically simulated experiments are conducted by using the EGM2008 to simulate airborne gravity data in the western United States, which is a mountainous area. The statistical results validate that Cimmino and CAV are comparable to Landweber, and iterative methods are better than generalized cross validation and least squares in the test examples. Furthermore, the results also show that three stopping rules succeed in stopping the iterative process, when the resolution of gravity anomalies grid is \(5^{\prime }\). When the resolution is \(2^{\prime }\), DP fails to stop the iteration, and ME is unstable, and only NCP performs well.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Alberts B, Klees R (2004) A comparison of methods for the inversion of airborne gravity data. J Geodesy 78(1):55–65

    Google Scholar 

  2. Censor Y, Gordon D, Gordon R (2001) In Component averaging: an efficient iterative parallel algorithm for large and sparse unstructured problems. Parallel Comput 27:777–808

    Article  Google Scholar 

  3. Cimmino G (1938) Calcolo approssimato per le soluzioni dei sistemi di equazioni lineari. La Ricerca Scientifica, XVI, Series II, Anno IX 1:326–333

    Google Scholar 

  4. Deng K, Huang M, Bao J, Ouyang Y, Lu X, Liu C (2011) Tikhonov two-parameter regulation algorithm in downward continuation of airborne gravity data. Acta Geodaetica Et Cartographica Sinica (in Chinese) 40(6):690–696

    Google Scholar 

  5. Edwards TH, Stoll S (2018) Optimal Tikhonov regularization for DEER spectroscopy. J Magn Reson 288:58–68

    Article  Google Scholar 

  6. Eicker A (2008) Gravity field refinement by radial basis functions from in-situ satellite data. PhD Thesis, University of Bonn, Bonn, Germany

  7. Elfving T, Nikazad T (2007) Stopping rules for Landweber-type iteration. Inverse Prob 23(4):1417–1432

    Article  Google Scholar 

  8. Foroughi I, Tenzer R (2014) Assessment of the direct inversion scheme for the quasigeoid modeling based on applying the Levenberg–Marquardt algorithm. Appl Geomatics 6(3):171–180

    Article  Google Scholar 

  9. Forsberg R, Olesen AV, Alshamsi A, Gidskehaug A, Ses S, Kadir M, Peter BN (2012) Airborne gravimetry survey for the marine area of the United Arab Emirates. Mar Geodesy 35(3):221–232

    Article  Google Scholar 

  10. Freeden W, Nutz H, Schreiner M (2018) Geomathematical advances in satellite gravity gradiometry (SGG). In: Freeden W, Nashed MZ (eds) Handbook of mathematical geodesy. Geosystems mathematics. Cham, Birkhäuser, pp 561–604

    Chapter  Google Scholar 

  11. Goli M, Foroughi I, Novak P (2018) On estimation of stopping criteria for iterative solutions of gravity downward continuation. Can J Earth Sci 55(4):397–405

    Article  Google Scholar 

  12. Golub GM, Heath M, Wahba G (1979) Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics 21:215–223

    Article  Google Scholar 

  13. Hansen PC, Jorgensen JS (2018) AIR tools II: algebraic iterative reconstruction methods. Improv Implementat Numer Algorithm 79(1):107–137

    Article  Google Scholar 

  14. Hansen PC, Oleary DP (1993) The use of the L-curve in the regularization of discrete ill-posed problems. SIAM J Sci Comput 14(6):1487–1503

    Article  Google Scholar 

  15. Hansen PC, Saxild-Hansen M (2012) AIR Tools—A MATLAB package of algebraic iterative reconstruction methods. J Comput Appl Math 236(8):2167–2178

    Article  Google Scholar 

  16. Hardy RL (1971) Multiquadric equations of topography and other irregular surfaces. J Geophys Res 76(8):1905–1915

    Article  Google Scholar 

  17. Heiskanen WA, Moritz H (1967) Physical Geodesy. W.H. Freeman and Company, San Francisco

    Google Scholar 

  18. Hoerl AE, Kennard RW (1970) Ridge regression: biased estimation for nonorthogonal problems. Technometrics 12:55–67

    Article  Google Scholar 

  19. Hofmann WB, Moritz H (2005) Physical geodesy. Springer, Wien

    Google Scholar 

  20. Huang M, Liu M, Deng K, Ouyang Y, Lu X, Zhai G, Wu T, Chen X (2018) Analytical solution of downward continuation for airborne gravimetry based on upward continuation method. Chinese J Geophys 61(12):4746–4757 (in Chinese)

    Google Scholar 

  21. Hwang C, Hsiao Y, Shih H, Yang M, Chen K, Forsberg R, Olsen A (2007) Geodetic and geophysical results from a Taiwan airborne gravity survey: data reduction and accuracy assessment. J Geophys Res Solid Earth 112:B4007

    Article  Google Scholar 

  22. Jiang T, Dang Y, Zhang C, Liu Z (2013) Downward continuation of airborne gravity data based on rectangular harmonic analysis. Acta Geodaetica Et Cartographica Sinica 42(4):475–480 (in Chinese)

    Google Scholar 

  23. Kilmer M, O’Leary D (2001) Choosing regularization parameters in iterative methods for ill-posed problems. SIAM 22:1204–1221

    Google Scholar 

  24. Kingdon R, Vaníček P (2010) Poisson downward continuation solution by the Jacobi method. J Geodetic Sci 1(1):74–81

    Article  Google Scholar 

  25. Klees R, Ditmar P, Broersen P (2003) How to handle colored observation noise in large least-squares problems. J Geodesy 76(11):629–640

    Article  Google Scholar 

  26. Klees R, Tenzer R, Prutkin I, Wittwer T (2008) A data-driven approach to local gravity field modelling using spherical radial basis functions. J Geodesy 82(8):457–471

    Article  Google Scholar 

  27. Koch KR (1987) Bayesian inference for variance components. Manuscr Geod 12:309–313

    Google Scholar 

  28. Kusche J, Klees R (2002) Regularization of gravity field estimation from satellite gravity gradients. J Geodesy 76:359–368

    Article  Google Scholar 

  29. Landweber L (1951) An iteration formula for Fredholm integral equations of the first kind. Am J Math 73(3):615–624

    Article  Google Scholar 

  30. Lin M, Denke H, Muller J (2019) A comparison of fixed- and free-positioned point mass methods for regional gravity field modeling. J Geodyn 125:32–47

    Article  Google Scholar 

  31. Liu X, Sun Z, Guan B, Fan H (2018) Downward continuation of airborne gravimetry data based on improved poisson integral iteration method. Acta Geodaetica Et Cartographica Sinica (in Chinese) 47(9):1188–1195

    Google Scholar 

  32. Moritz H (1980) Advanced physical geodesy. Herbert Wichmann Verlag, Karlsruhe

    Google Scholar 

  33. Naeimi M (2013) Inversion of satellite gravity data using spherical radial base functions. Leibniz Universitat Hannover, Hannover, Germany, Nr, p 309

    Google Scholar 

  34. Novák P, Heck B (2002) Downward continuation and geoid determination based on band-limited airborne gravity data. J Geodesy 76(5):269–278

    Article  Google Scholar 

  35. Pasteka R, Karcol R, Kusnirak D, Mojzes A (2012) REGCONT: a MATLAB based program for stable downward continuation of geophysical potential fields using Tikhonov regularization. Comput Geosci 49:278–289

    Article  Google Scholar 

  36. Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2012) The development and evaluation of the earth gravitational model 2008 (EGM2008). J Geophys Res Solid Earth 117:B04406

    Article  Google Scholar 

  37. Rummel R, van Gelderen M (1995) Meissl scheme—spectral characteristics of physical geodesy. Manuscr Geodaet 20:379–385

    Google Scholar 

  38. Saleh J, Li X, Wang Y, Roman DR, Smith DA (2013) Error analysis of the NGS’ surface gravity database. J Geodesy 87(3):203–221

    Article  Google Scholar 

  39. Scherzer O (1993) The use of Morozov’s discrepancy principle for Tikhonov regularization for solving nonlinear ill-posed problems. Computing 51(1):45–60

    Article  Google Scholar 

  40. Schneider F (1997) Inverse problems in satellite geodesy and their approximate solution by splines and wavelets. Doctoral thesis, University of Kaiserslautern, Geomathematics Group, Shaker

  41. Sun W, Wu X, Wang Q, Liu X, Wang K (2014) Wave number domain iterative Tikhonov regularization method for downward continuation of airborne gravity data. Acta Geodaetica Et Cartographica Sinica (in Chinese) 43(6):566–574

    Google Scholar 

  42. Tai Z, Zhang F, Zhang F, Hao M (2016) Approximate iterative operator method for potential-field downward continuation. J Appl Geophys 128:31–40

    Article  Google Scholar 

  43. Tikhonov, (1963) Solution of incorrectly formulated problems and the regularization method. Soviet Math Dokl 4:1035–1038

    Google Scholar 

  44. Tóth G, Földváry L, Tziavos IN, Ádám J (2006) Upward/downward continuation of gravity gradients for precise geoid determination. Acta Geodaetica Et Geophysica Hungarica 41:21–30

    Article  Google Scholar 

  45. Vaníček P, Sun W, Ong P, Martinec Z, Najafi M, Vajda P, Horst B (1996) Downward continuation of Helmert’s gravity. J Geodesy 71:21–34

    Article  Google Scholar 

  46. Vaníček P, Novák P, Sheng M, Kingdon R, Janak J, Foroughi I, Martinec Z, Santos M (2017) Does Poisson’s downward continuation give physically meaningful results? Stud Geophys Geod 61(3):412–428

    Article  Google Scholar 

  47. Wahba G (1976) A survey of some smoothing problems and the methods of generalized cross-validation for solving them. In proceedings of the conference on the applications of statistics: Dayton, Ohio.

  48. Wessel P, Smith WHF (1998) New, improved version of generic mapping tools released, EOS. Trans Am Geophys Un 79:579

    Article  Google Scholar 

  49. Xu P (1992) Determination of surface gravity anomalies using gradiometric observables. Geophys J Int 110(2):321–332

    Article  Google Scholar 

  50. Xu P (1998) Truncated SVD methods for discrete linear ill-posed problems. Geophys J Int 135:505–514

    Article  Google Scholar 

  51. Xu P (2009) Iterative generalized cross-validation for fusing heteroscedastic data of inverse ill-posed problems. Geophys J Int 179:182–200

    Article  Google Scholar 

  52. Xu P, Shen Y, Fukuda Y, Liu Y (2006) Variance component estimation in linear inverse Ill-posed models. J Geodesy 80(2):69–81

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by the National Natural Science Foundation of China (42074001, 41774026) and China Postdoctoral Science Foundation (2019M652010, 2019T120477). Valuable comments by two anonymous reviewers are gratefully acknowledged. The maps were produced using the Generic Mapping Tools (Wessel and Smith 1998).

Author information

Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Data collection was performed by HY, and data analysis was performed by HY and NQ. The first draft of the manuscript was written by HY and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Shubi Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yu, H., Chang, G., Qian, N. et al. Downward continuation of airborne gravity data based on iterative methods. Acta Geod Geophys 56, 539–558 (2021). https://doi.org/10.1007/s40328-021-00343-7

Download citation

Keywords

  • Airborne gravity
  • Downward continuation
  • Regularization
  • Iterative methods
  • Stopping rules