Possible ionospheric anomalies associated with the 2009 Mw 6.4 Taiwan earthquake from DEMETER and GNSS TEC

Abstract

The recent advances in satellite based ionosphere monitoring provided more evidence about earthquake (EQ) precursors from lithosphere ionosphere coupling mechanism. In this paper, we investigate ionospheric anomalies associated with the December 19, 2009, Taiwan EQ (Mw = 6.4), that occurred on UT = 13:02 h. Seismo ionospheric anomalies are evaluated during 31 days (20 day before followed by 10 days after the EQ) in the data of French Satellite Detection of Electro-Magnetic Emissions Transmitted from Earthquake Regions (DEMETER) and validated from Global Navigation Satellite System (GNSS) retrieved Total Electron Content (TEC). The day time values of ISL (Langmuir Probe) and IAP (Ion Analyzer) from DEMETER point to significant ionospheric perturbations within 5 days associated with EQ day. Moreover, GNSS stations of International GNSS Service (IGS) within EQ preparation zone also validate anomalies in ionosphere prior/after the Mw 6.4, Taiwan EQ. Moreover, spatial and temporal analyses of daily ionospheric indices from DEMETER and GNSS point to simultaneous enhancement in electron density, ion density, electron temperature and TEC related to the main shock during quiet geomagnetic storm (Dst <  − 30 nT, Kp ≤ 3). All these evidence aids in promoting the lithosphere- ionosphere coupling over the epicenter of Mw 6.4 during the preparation period from DEMETER and GNSS TEC.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Afraimovich EL, Astafieva EI, Gokhberg MB, Lapshin VM, Permyakova VE, Steblov GM, Shalimov SL (2004) Variations of the total electron content in the ionosphere from GPS data recorded during the Hector Mine earthquake of October 16, 1999 California. Russ J Earth Sci 6(5):339–354. https://doi.org/10.2205/2004ES000155

    Article  Google Scholar 

  2. Afraimovich EL, Astafyeva EI, Oinats YYV, Zhivetiev IV (2008) Global electron content: a new conception to track solar activity. Ann Geophys 26(2):335–344. https://doi.org/10.5194/angeo-26-335-2008

    Article  Google Scholar 

  3. Ahmad N, Barkat A, Ali A et al (2019) Investigation of spatio-temporal satellite thermal IR anomalies associated with the Awaran Earthquake (Sep 24, 2013; M 7.7), Pakistan. Pure Appl Geophys 176:3533–3544. https://doi.org/10.1007/s00024-019-02149-9

    Article  Google Scholar 

  4. Akhoondzadeh M, Parrot M, Saradjian MR (2010) Electron and ion density variations before strong earthquakes (M > 6.0) using DEMETER and GPS data. Nat Hazards Earth Syst Sci 10(1):7–18. https://doi.org/10.5194/nhess-10-7-2010

    Article  Google Scholar 

  5. Ciraolo L, Azpilicueta F, Brunini C, Meza A, Radicella SM (2007) Calibration errors on experimental slant total electron content (TEC) determined with GPS. J Geod 81:111–120. https://doi.org/10.1007/s00190-006-0093-1

    Article  Google Scholar 

  6. Contoyiannis Y, Potirakis SM (2018) Signatures of the symmetry breaking phenomenon in pre-seismic electromagnetic emissions. J Stat Mech Theory Exp. https://doi.org/10.1088/1742-5468/aad6ba

    Article  Google Scholar 

  7. Cussac T, Clair MA, Ultré-Guerard P, Buisson F, Lassalle-Balier G, Ledu M, Elisabelar C, Passot X, Rey N (2006) The Demeter microsatellite and ground segment. Planet Space Sci 54(5):413–427. https://doi.org/10.1016/j.pss.2005.10.013

    Article  Google Scholar 

  8. Daneshvar MRM, Freund FT (2017) Remote sensing of atmospheric and ionospheric signals prior to the Mw 8.3 Illapel earthquake, Chile 2015. Pure Appl Geophys 174:11–45. https://doi.org/10.1007/s00024-016-1366-0

    Article  Google Scholar 

  9. Dautermann T, Calais E, Haase J, Garrison J (2007) Investigation of ionospheric electron content variations before earthquakes in southern California, 2003–2004. J Geophys Res. https://doi.org/10.1029/2006JB004447

    Article  Google Scholar 

  10. Dobrovolsky IP, Zubkov SI, Miachkin VI (1979) Estimation of the size of earthquake preparation zones. Pure Appl Geophys 117:1025–1044. https://doi.org/10.1007/BF00876083

    Article  Google Scholar 

  11. Elshin O, Tronin AA (2020) Global earthquake prediction systems. Open J Earthq Res 09(02):170–180. https://doi.org/10.4236/ojer.2020.92010

    Article  Google Scholar 

  12. Florios K, Contopoulos I, Christofilakis V, Tatsis G, Chronopoulos S, Repapis C, Tritakis V (2020) Pre-seismic electromagnetic perturbations in two earthquakes in Northern Greece. Pure Appl Geophys 177(2):787–799. https://doi.org/10.1007/s00024-019-02362-6

    Article  Google Scholar 

  13. Freund FT, Takeuchi A, Lau BWS, Al-Manaseer A, Fu CC, Bryant NA et al (2007) Stimulated infrared emission from rocks: assessing a stress indicator. eEarth 2:1–10. https://doi.org/10.5194/ee-2-7-2007

    Article  Google Scholar 

  14. Freund FT, Kulahci IG, Cyr G, Ling J, Winnick M, Tregloan- Reed J, Freund MM (2009) Air ionization at rock surfaces and pre-earthquake signals. J Atmos Sol Terr Phys 71:1824–1834. https://doi.org/10.1016/j.jastp.2009.07.013

    Article  Google Scholar 

  15. Freund F (2010) Toward a unified solid state theory for pre-earthquake signals. Acta Geophys 58(5):719–766. https://doi.org/10.2478/s11600-009-0066-x

    Article  Google Scholar 

  16. Geller RJ, Jackson DD, Kagan YY, Mulargia F (1997) Earthquakes cannot be predicted. Science 275(5306):1616–1616. https://doi.org/10.1126/science.275.5306.1616

    Article  Google Scholar 

  17. Guo J, Li W, Yu H, Liu Z, Zhao C, Kong Q (2015) Impending ionospheric anomaly preceding the Iquique Mw8.2 earthquake in Chile on 2014 April 1. Geophys J Int 203:1461–1470. https://doi.org/10.1093/gji/ggv376

    Article  Google Scholar 

  18. Hayakawa M, Hobara Y (2010) Current status of seismo-electromagnetics for short-term earthquake prediction. Geomat Nat Hazards Risk 1(2):115–155. https://doi.org/10.1080/19475705.2010.486933

    Article  Google Scholar 

  19. Ke F, Wang Y, Wang X, Qian H, Shi C (2016) Statistical analysis of seismo-ionospheric anomalies related to Ms > 5.0 earthquakes in China by GPS TEC. J Seismol 20:137–149. https://doi.org/10.1007/s10950-015-9516-x

    Article  Google Scholar 

  20. Klobuchar JA (1987) Ionospheric time-delay algorithm for single-frequency GPS users. IEEE Trans Aerosp Electron Syst 23:325–331. https://doi.org/10.1109/TAES.1987.310829

    Article  Google Scholar 

  21. Kuo CL, Huba JD, Joyce G, Lee LC (2011) Ionosphere plasma bubbles and density variations induced by pre-earthquake rock currents and associated surface charges. J Geophys Res 116:A10317. https://doi.org/10.1029/2011JA016628

    Article  Google Scholar 

  22. Kuo CL, Lee LC, Huba JD (2014) An improved coupling model for the lithosphere–atmosphere–ionosphere system. J Geophys Res Space Phys 119:3189–3205. https://doi.org/10.1002/2013JA019392

    Article  Google Scholar 

  23. Lebreton J-P, Stverak S, Travnicek P, Maksimovic M, Klinge D, Merikallio S, Lagoutte D, Poirier B, Blelly P-L, Kozacek Z, Salaquarda M (2006) The ISL Langmuir probe experiment processing onboard DEMETER: scientific objectives, description and first results. Planet Space Sci 54:472–486. https://doi.org/10.1016/j.pss.2005.10.017

    Article  Google Scholar 

  24. Li Z, Yuan Y, Wang N, Hernandez-Pajares M, Huo X (2014) SHPTS: towards a new method for generating precise global ionospheric TEC map based on spherical harmonic and generalized trigonometric series functions. J Geodesy 89(4):331–345. https://doi.org/10.1007/s00190-014-0778-9

    Article  Google Scholar 

  25. Liu W, Xu L (2017) Statistical analysis of ionospheric TEC anomalies before global Mw ≥ 7.0 earthquakes using data of CODE GIM. J Seismol 21:759–775. https://doi.org/10.1007/s10950-016-9634-0

    Article  Google Scholar 

  26. Liu JY, Chen YI, Chuo YJ, Chen CS (2006) A statistical investigation of pre earthquake ionospheric anomaly. J Geophys Res. https://doi.org/10.1029/2005JA011333

    Article  Google Scholar 

  27. Liu JY, Chen YI, Chen CH, Liu CY, Chen CY, Nishihashi M, Li JZ, Xia YQ, Oyama KI, Hattori K, Lin CH (2009) Seismoionospheric GPS total electron content anomalies observed before the 12 May 2008 Mw 7.9 Wenchuan earthquake. J Geophys Res Space Phys. https://doi.org/10.1029/2008JA013698

    Article  Google Scholar 

  28. Liu L, Wan W, Zhang ML, Zhao B, Ning B (2008) Pre-storm enhancements in NmF2 and total electron content at low latitudes. J Geophys Res 113:A02311. https://doi.org/10.1029/2007JA012832

    Article  Google Scholar 

  29. Marchetti D, Santis A, D’Arcangelo S, Poggio F, Jin S, Piscini A, Campuzano SA (2019) Magnetic field and electron density anomalies from swarm satellites preceding the major earthquakes of the 2016–2017 Amatrice-Norcia (Central Italy) Seismic Sequence. Pure Appl Geophys 177:305–319. https://doi.org/10.1007/s00024-019-02138-y

    Article  Google Scholar 

  30. Parrot M (2011) Statistical analysis of the ion density measured by the satellite DEMETER in relation with the seismic activity. Earthq Sci 24:513–521. https://doi.org/10.1007/s11589-011-0813-3

    Article  Google Scholar 

  31. Parrot M, Berthelier JJ, Lebreton JP, Sauvaud JA, Santo- lik, O., and Blecki, (2006) J.: Examples of unusual ionospheric observations made by the DEMETER satellite over seismic regions. Phys Chem Earth 31:486–495. https://doi.org/10.1016/j.pce.2006.02.011

    Article  Google Scholar 

  32. Parrot M, Benoist D, Berthelier JJ, Blecki J, Chapuis Y, Colin F, Elie F, Fergeau P, Lagoutte D, Lefeuvre F, Legendre C, Lévêque M, Pincon JL, Poirier B, Seran HC, Zamora P (2005) The magnetic field experiment IMSC and its data processing onboard DEMETER: Scientific objectives, description and first results. Plan Space Sci 54:441–455. https://doi.org/10.1016/j.pss.2005.10.015

    Article  Google Scholar 

  33. Pulinets SA, Ouzounov D, Ciraolo L, Singh R, Cervone G, Leyva A, Dunajecka M, Karelin AV, Boyarchuk KA, Kotsaren-ko A (2006) Thermal, atmospheric and ionospheric anomalies around the time of the Colima M 7.8 earthquake of 21 January 2003. Ann Geophys 24(3):835–849. https://doi.org/10.5194/angeo-24-835-2006

    Article  Google Scholar 

  34. Pulinets S, Ouzounov D (2011) Lithosphere–atmosphere–ionosphere coupling (LAIC) model—an unified concept for earthquake precursors validation. J Asian Earth Sci 41(4–5):371–382. https://doi.org/10.1016/j.jseaes.2010.03.005

    Article  Google Scholar 

  35. Ryu K, Parrot M, Kim SG, Jeong KS, Chae JS, Pulinets S, Oyama KI (2014) Suspected seismo-ionospheric coupling observed by satellite measurements and GPS TEC related to the M7.9 Wenchuan earthquake of 12 May 2008. J Geophys Res Space Phys 119(12):10305–10323. https://doi.org/10.1002/2014JA020284

    Article  Google Scholar 

  36. Rishbeth H (2007) Do earthquake precursors really exist? Eos Trans Am Geophys Union 88(29):296–296. https://doi.org/10.1029/2007EO290008

    Article  Google Scholar 

  37. Sekertekin A, Inyurt S, Yaprak S (2020) Pre-seismic ionospheric anomalies and spatio-temporal analyses of MODIS Land surface temperature and aerosols associated with Sep, 24 2013 Pakistan Earthquake. J Atmos Solar Terr Phys. https://doi.org/10.1016/j.jastp.2020.105218

    Article  Google Scholar 

  38. Shah M, Jin S (2015) Statistical characteristics of seismo-ionospheric GPS TEC disturbances prior to global Mw≥5.0 earthquakes (1998–2014). J Geodyn 92:42–49. https://doi.org/10.1016/j.jog.2015.10.002

    Article  Google Scholar 

  39. Shah M, Jin S (2018) Pre-seismic ionospheric anomalies of the 2013 Mw = 7.7 Pakistan earthquake from GPS and COSMIC observations. Geod Geodyn 9(5):378–387. https://doi.org/10.1016/j.geog.2017.11.008

    Article  Google Scholar 

  40. Shah M, Tariq MA, Ahmad J, Naqvi NA, Jin S (2019) Seismo ionospheric anomalies before the 2007 M7.7 Chile earthquake from GPS TEC and DEMETER. J Geodyn 127:42–51. https://doi.org/10.1016/j.jog.2019.05.004

    Article  Google Scholar 

  41. Shah M, Aibar AC, Tariq MA, Ahmed J, Ahmed A (2020) Possible ionosphere and atmosphere precursory analysis related to MW > 6.0 earthquakes in Japan. Remote Sens Environ. https://doi.org/10.1016/j.rse.2019.111620

    Article  Google Scholar 

  42. Shah M, Ahmed A, Ehsan M, Khan M, Tariq MA, Calabia A, Rahman Z (2020) Total electron content anomalies associated with earthquakes occurred during 1998–2019. Acta Astronaut. https://doi.org/10.1016/j.actaastro.2020.06.005

    Article  Google Scholar 

  43. Shah M, Inyurt S, Ehsan M, Ahmed A, Shakir M, Saleem U, Iqbal MS (2020) Seismo ionospheric anomalies in Turkey associated with Mw ≥ 6.0 earthquakes detected by GPS stations and GIM TEC. Adv Space Res 65(11):2540–2550. https://doi.org/10.1016/j.asr.2020.03.005

    Article  Google Scholar 

  44. Sarkar S, Gwal AK, Parrot M (2007) Ionospheric variations observed by the DEMETER satellite in the mid-latitude region during strong earthquakes. J Atmos Solar-Terr Phys 69:1524–1540. https://doi.org/10.1016/j.jastp.2007.06.006

    Article  Google Scholar 

  45. Sarkar S, Choudhary S, Sonakia A, Vishwakarma A, Gwal AK (2012) Ionospheric anomalies associated with the Haiti earthquake of 12 January 2010 observed by DEMETER satellite. Nat Hazards Earth Syst Sci 12:671–678. https://doi.org/10.5194/nhess-12-671-2012

    Article  Google Scholar 

  46. Tariq MA, Shah M, Hernández-Pajares M, Iqbal T (2019) Pre-earthquake ionospheric anomalies before three major earthquakes by GPS-TEC and GIM-TEC data during 2015–2017. Adv Space Res 63(2019):2088–2099. https://doi.org/10.1016/j.asr.2018.12.028

    Article  Google Scholar 

  47. Tao D, Cao J, Battiston R, Li L, Ma Y, Liu W, Zhima Z, Wang L, Dunlop MW (2017) Seismo-ionospheric anomalies in ionospheric TEC and plasma density before the 17 July 2006 M7.7 south of Java earthquake. Ann Geophys 35:589–598. https://doi.org/10.5194/angeo-35-589-2017

    Article  Google Scholar 

  48. Thomas EG, Baker JBH, Ruohoniemi JM, Coster AJ, Zhang SR (2016) The geomagnetic storm time response of GPS total electron content in the North American sector. J Geophys Res Space Phys 121(2):1744–1759. https://doi.org/10.1002/2015JA022182

    Article  Google Scholar 

  49. Ulukavak M, Inyurt S (2020) Seismo-ionospheric precursors of strong sequential earthquakes in Nepal region. Acta Astronaut 166:123–130. https://doi.org/10.1016/j.actaastro.2019.09.033

    Article  Google Scholar 

  50. Varotsos PA, Sarlis NV, Skordas ES (2011) Scale-specific order parameter fluctuations of seismicity in natural time before mainshocks. EPL (Europhys Lett) 96(5):59002. https://doi.org/10.1209/0295-5075/96/59002

    Article  Google Scholar 

  51. Yang S-S, Potirakis SM, Sasmal S, Hayakawa M (2020) Natural time analysis of global navigation satellite system surface deformation: the case of the 2016 Kumamoto earthquakes. Entropy 22(6):674. https://doi.org/10.3390/e22060674

    Article  Google Scholar 

  52. Zhang X, Hattori K, Tramutoli T (2017) Preface to the special issue on electromagnetic phenomena related to seismic and volcanic activities from EMSEV in 2016. Earthq Sci 30(4):165–166. https://doi.org/10.1007/s11589-017-0194-3

    Article  Google Scholar 

  53. Zhang X, Shen X, Liu J, Ouyang X, Qian J, Zhao S (2009) Analysis of ionospheric plasma perturbations before Wenchuan earthquake. Nat Hazards Earth Syst Sci 9:1259–1266. https://doi.org/10.5194/nhess-9-1259-2009

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the IGS and ISGI for sharing GNSS TEC and geomagnetic storm data, respectively. We are also thankful to DEMETER satellite mission for sharing their valuable data. Furthermore, we are also grateful to USGS for providing EQ catalogue and regional seismic information. We are also thankful to the handling editor and two anonymous reviewers for constructive and beneficial comments.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Munawar Shah.

Ethics declarations

Conflict of interest

The authors have no conflicts with their organizations and any other funding agency.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abbasi, A.R., Shah, M., Ahmed, A. et al. Possible ionospheric anomalies associated with the 2009 Mw 6.4 Taiwan earthquake from DEMETER and GNSS TEC. Acta Geod Geophys 56, 77–91 (2021). https://doi.org/10.1007/s40328-020-00325-1

Download citation

Keywords

  • DEMETER
  • GNSS
  • TEC
  • Earthquake