Skip to main content
Log in

Upper mantle xenoliths as sources of geophysical information: the Perşani Mts. area as a case study

  • Original Study
  • Published:
Acta Geodaetica et Geophysica Aims and scope Submit manuscript

Abstract

The aim is to give an overview on how geochemical and petrological data, obtained from upper mantle xenoliths, could be utilized to provide information on the geophysical properties of the upper mantle at their origin. First we demonstrate how a tentative lithospheric column may be constructed based on the equilibrium temperature of upper mantle xenoliths and the area specific depth-temperature curves. Then it is described how the speed of seismic waves at the given pressure and temperature conditions could be calculated from the modal composition and geochemistry of major rock forming minerals of upper mantle xenoliths (e.g. olivine and orthopyroxene). It is also discussed how the lattice preferred orientation of minerals in upper mantle xenoliths provides information on the seismic anisotropy of the upper mantle, and how this information could be used to calculate the orientation and thickness of the anisotropic layer in the upper mantle if one anisotropic layer is assumed. Structural hydroxyl (or most commonly referred to as ‘water’) incorporated in nominally anhydrous minerals plays a critical role in determining the electrical conductivity and rheology of the upper mantle. Finally, it is presented how electrical conductivity and effective viscosity of the upper mantle could be approximated based on the structural hydroxyl content in olivine, the most abundant mineral constituent of the upper mantle. Our study area, the Perşani Mountains is situated in the Carpathian Bend area (Romania) which is geologically one of the most active areas in Europe. Abundant upper mantle xenoliths from the Perşani Mountains (Eastern Carpathians) will serve as examples how meaningful geophysical information can be obtained for the upper mantle. Furthermore, it is shown how these pieces of information may be utilized in interpreting geophysical and geodynamic challenges of this area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ádám A, Szarka L, Novák A, Wesztergom V (2017) Key results on deep electrical conductivity anomalies in the Pannonian Basin (PB), and their geodynamic aspects. Acta Geod Geoph 52(2):205–228

    Article  Google Scholar 

  • Aradi LE, Hidas K, Kovács IJ, Tommasi A, Klébesz R, Garrido CJ, Szabó C (2017) Fluid-enhanced annealing in the subcontinental lithospheric mantle beneath the westernmost margin of the Carpathian–Pannonian extensional basin system. Tectonics 36:2987–3011

    Article  Google Scholar 

  • Artemieva IM (2009) The continental lithosphere: reconciling thermal, seismic, and petrologic data. Lithos 109(1):23–46

    Article  Google Scholar 

  • Bada G, Horváth F, Dövényi P, Szafián P, Windhoffer G, Cloetingh S (2007) Present-day stress field and tectonic inversion in the Pannonian basin. Glob Planet Change 58(1–4):165–180

    Article  Google Scholar 

  • Baptiste V, Tommasi A (2014) Petrophysical constraints on the seismic properties of the Kaapvaal craton mantle root. Solid Earth 5(1):45

    Article  Google Scholar 

  • Ben Ismail W, Mainprice D (1998) An olivine fabric database: an overview of upper mantle fabrics and seismic anisotropy. Tectonophysics 296(1–2):145–157

    Article  Google Scholar 

  • Berkesi M, Guzmics T, Szabó C, Dubessy J, Bodnar RJ, Hidas K, Ratter K (2012) The role of CO2-rich fluids in trace element transport and metasomatism in the lithospheric mantle beneath the Central Pannonian Basin, Hungary, based on fluid inclusions in mantle xenoliths. Earth Planet Sci Lett 331:8–20

    Article  Google Scholar 

  • Berryman JG (1995) Mixture theories for rock properties. Rock Phys Phase Relat Handb Phys Constants 3:205–228

    Article  Google Scholar 

  • Brey GP, Köhler T (1990) Geothermobarometry in four-phase lherzolites II. New thermobarometers, and practical assessment of existing thermobarometers. J Petrol 31(6):1353–1378

    Article  Google Scholar 

  • Chalot-Prat F, Arnold M (1999) Immiscibility between calciocarbonatitic and silicate melts and related wall rock reactions in the upper mantle: a natural case study from Romanian mantle xenoliths. Lithos 46(4):627–659

    Article  Google Scholar 

  • Chalot-Prat F, Boullier AM (1997) Metasomatism in the subcontinental mantle beneath the Eastern Carpathians (Romania): new evidence from trace element geochemistry. Contrib Miner Petrol 129(4):284–307

    Article  Google Scholar 

  • Chalot-Prat F, Gîrbacea R (2000) Partial delamination of continental mantle lithosphere, uplift-related crust–mantle decoupling, volcanism and basin formation: a new model for the Pliocene-Quaternary evolution of the southern East-Carpathians, Romania. Tectonophysics 327(1–2):83–107

    Article  Google Scholar 

  • Ciulavu D, Dinu C, Szakács A, Dordea D (2000) Neogene kinematics of the Transylvanian basin (Romania). AAPG Bull 84(10):1589–1615

    Google Scholar 

  • Corver MP, Doust H, van Wees JD, Cloetingh S (2011) Source-rock maturation characteristics of symmetric and asymmetric grabens inferred from integrated analogue and numerical modeling: the southern Viking Graben (North Sea). Mar Pet Geol 28(4):921–935

    Article  Google Scholar 

  • Csontos L, Nagymarosy A (1998) The Mid-Hungarian line: a zone of repeated tectonic inversions. Tectonophysics 297(1–4):51–71

    Article  Google Scholar 

  • Dai L, Karato SI (2009) Electrical conductivity of orthopyroxene: implications for the water content of the asthenosphere. Proc Jpn Acad Ser B 85(10):466–475

    Article  Google Scholar 

  • Dixon JE, Dixon TH, Bell DR, Malservisi R (2004) Lateral variation in upper mantle viscosity: role of water. Earth Planet Sci Lett 222(2):451–467

    Article  Google Scholar 

  • Downes H (1997) Shallow continental lithospheric mantle heterogeneity—petrological constraints. In: Upper mantle heterogeneities from active and passive seismology. Springer, Dordrecht, pp 295–308

    Chapter  Google Scholar 

  • Downes H, Bodinier J, Thirlwall M, Lorand J-P, Fabries J (1991) REE and Sr–Nd isotopic geochemistry of eastern Pyrenean peridotite massifs: sub-continental lithospheric mantle modified by continental magmatism. J Petrol Volume Special_Volume(2):97–115

    Article  Google Scholar 

  • Downes H, Embey-Isztin A, Thirlwall MF (1992) Petrology and geochemistry of spinel peridotite xenoliths from the western Pannonian Basin (Hungary): evidence for an association between enrichment and texture in the upper mantle. Contrib Miner Petrol 109(3):340–354

    Article  Google Scholar 

  • Embey-Isztin A (1976) Amphibolite/lherzolite composite xenolith from Szigliget, north of the Lake Balaton, Hungary. Earth Planet Sci Lett 31(2):297–304

    Article  Google Scholar 

  • Falus G (2004) Microstructural analysis of upper mantle peridotites: their application in understanding mantle processes during the formation of the Intra-Carpathian Basin System. Doctoral dissertation, SZTE, pp 165

  • Falus G, Szabó Cs, Vaselli O (2000) Mantle upwelling within the Pannonian Basin: evidence from xenolith lithology and mineral chemistry. Terra Nova 12(6):295–302

    Article  Google Scholar 

  • Falus G, Tommasi A, Ingrin J, Szabó C (2008) Deformation and seismic anisotropy of the lithospheric mantle in the southeastern Carpathians inferred from the study of mantle xenoliths. Earth Planet Sci Lett 272(1):50–64

    Article  Google Scholar 

  • Falus G, Tommasi A, Soustelle V (2011) The effect of dynamic recrystallization on olivine crystal preferred orientations in mantle xenoliths deformed under varied stress conditions. J Struct Geol 33(11):1528–1540

    Article  Google Scholar 

  • Faul UH, Cline CJ, David EC, Berry AJ, Jackson I (2016) Titanium-hydroxyl defect-controlled rheology of the Earth’s upper mantle. Earth Planet Sci Lett 452:227–237

    Article  Google Scholar 

  • Fei H, Wiedenbeck M, Yamazaki D, Katsura T (2013) Small effect of water on upper-mantle rheology based on silicon self-diffusion coefficients. Nature 498(7453):213

    Article  Google Scholar 

  • Fillerup MA, Knapp JH, Knapp CC, Raileanu V (2010) Mantle earthquakes in the absence of subduction? Continental delamination in the Romanian Carpathians. Lithosphere 2(5):333–340

    Article  Google Scholar 

  • Fullea J (2017) On joint modelling of electrical conductivity and other geophysical and petrological observables to infer the structure of the lithosphere and underlying upper mantle. Surv Geophys 38(5):963–1004

    Article  Google Scholar 

  • Gîrbacea R, Frisch W (1998) Slab in the wrong place: lower lithospheric mantle delamination in the last stage of the Eastern Carpathian subduction retreat. Geology 26(7):611–614

    Article  Google Scholar 

  • Hacker BR, Abers GA (2004) Subduction factory 3: an Excel worksheet and macro for calculating the densities, seismic wave speeds, and H2O contents of minerals and rocks at pressure and temperature. Geochem Geophys Geosyst. https://doi.org/10.1029/2003GC000614

    Article  Google Scholar 

  • Harangi S, Molnár M, Vinkler AP, Kiss B, Jull AJT, Leonard AG (2010) Radiocarbon dating of the last volcanic eruptions of Ciomadul volcano, Southeast Carpathians, eastern-central Europe. Radiocarbon 52(3):1498–1507

    Article  Google Scholar 

  • Harangi S, Sági T, Seghedi I, Ntaflos T (2013) Origin of basaltic magmas of Perşani volcanic field, Romania: a combined whole rock and mineral scale investigation. Lithos 180:43–57

    Article  Google Scholar 

  • Hidas K, Falus G, Szabó C, Szabó PJ, Kovács I, Földes T (2007) Geodynamic implications of flattened tabular equigranular textured peridotites from the Bakony-Balaton highland volcanic field (Western Hungary). J Geodyn 43(4):484–503

    Article  Google Scholar 

  • Hidas K, Guzmics T, Szabó C, Kovács I, Bodnar RJ, Zajacz Z, Nédli Z, Vaccari L, Perucchi A (2010) Coexisting silicate melt inclusions and H2O-bearing, CO2-rich fluid inclusions in mantle peridotite xenoliths from the Carpathian–Pannonian region (central Hungary). Chem Geol 274(1):1–18

    Article  Google Scholar 

  • Hirth G, Kohlstedt DL (1996) Water in the oceanic upper mantle: implications for rheology, melt extraction and the evolution of the lithosphere. Earth Planet Sci Lett 144(1–2):93–108

    Article  Google Scholar 

  • Horváth F (1993) Towards a mechanical model for the formation of the Pannonian basin. Tectonophysics 226(1–4):333–357

    Article  Google Scholar 

  • Huismans RS, Bertotti G, Ciulavu D, Sanders CAE, Cloetingh SAPL, Dinu C (1997) Structural evolution of the Transylvanian Basin (Romania): a sedimentary basin in the bend zone of the Carpathians. Tectonophysics 272(2–4):249–268

    Article  Google Scholar 

  • Ismail-Zadeh A, Matenco L, Radulian M, Cloetingh S, Panza G (2012) Geodynamics and intermediate-depth seismicity in Vrancea (the south-eastern Carpathians): current state-of-the art. Tectonophysics 530:50–79

    Article  Google Scholar 

  • Ivan M, Popa M, Ghica D (2008) SKS splitting observed at Romanian broad-band seismic network. Tectonophysics 462(1–4):89–98

    Article  Google Scholar 

  • James DE, Boyd FR, Schutt D, Bell DR, Carlson RW (2004) Xenolith constraints on seismic velocities in the upper mantle beneath southern Africa. Geochem Geophys Geosyst. https://doi.org/10.1029/2003GC000551

    Article  Google Scholar 

  • Jones AG, Evans RL, Eaton DW (2009) Velocity–conductivity relationships for mantle mineral assemblages in Archean cratonic lithosphere based on a review of laboratory data and Hashin-Shtrikman extremal bounds. Lithos 109(1–2):131–143

    Article  Google Scholar 

  • Jones AG, Fullea J, Evans RL, Muller MR (2012) Water in cratonic lithosphere: calibrating laboratory‐determined models of electrical conductivity of mantle minerals using geophysical and petrological observations. Geochem Geophys Geosyst. https://doi.org/10.1029/2012GC004055

    Article  Google Scholar 

  • Karátson D, Wulf S, Veres D, Magyari EK, Gertisser R, Timar-Gabor A, Novothny A, Telbisz T, Szalai Z, Anechitei-Deacu A, Appelt O, Bormann M, Jánosi Cs, Hubay K, Schäbitz F (2016) The latest explosive eruptions of Ciomadul (Csomád) volcano, East Carpathians—a tephrostratigraphic approach for the 51–29 ka BP time interval. J Volcanol Geoth Res 319:29–51

    Article  Google Scholar 

  • Klébesz R, Gráczer Z, Szanyi Gy, Liptai N, Kovács I, Patkó L, Pintér Zs, Falus Gy, Wesztergom V, Szabó Cs (2015) Constraints on the thickness and seismic properties of the lithosphere in an extensional setting (Nógrád-Gömör Volcanic Field, Northern Pannonian Basin). Acta Geod Geoph 50(2):133–149

    Article  Google Scholar 

  • Kohlstedt DL, Keppler H, Rubie DC (1996) Solubility of water in the α, β and γ phases of (Mg, Fe) 2 SiO 4. Contrib Miner Petrol 123(4):345–357

    Article  Google Scholar 

  • Koulakov I, Zaharia B, Enescu B, Radulian M, Popa M, Parolai S, Zschau J (2010) Delamination or slab detachment beneath Vrancea? New arguments from local earthquake tomography. Geochem Geophys Geosyst. https://doi.org/10.1029/2009GC002811

    Article  Google Scholar 

  • Kovács I, Falus G, Stuart G, Hidas K, Szabó C, Flower MJ, Hegedűs E, Posgay K, Zilahi-Sebess L (2012) Seismic anisotropy and deformation patterns in upper mantle xenoliths from the central Carpathian–Pannonian region: asthenospheric flow as a driving force for Cenozoic extension and extrusion? Tectonophysics 514–517:168–179

    Article  Google Scholar 

  • Kovács I, Lenkey L, Green DH, Fancsik T, Falus G, Kiss J, Orosz L, Angyal J, Vikor Z (2017) The role of pargasitic amphibole in the formation of major geophysical discontinuities in the shallow upper mantle. Acta Geod Geoph 52(2):183–204

    Article  Google Scholar 

  • Krézsek C, Bally AW (2006) The Transylvanian Basin (Romania) and its relation to the Carpathian fold and thrust belt: insights in gravitational salt tectonics. Mar Pet Geol 23(4):405–442

    Article  Google Scholar 

  • Lankreijer A, Mocanu V, Cloetingh S (1997) Lateral variations in lithosphere strength in the Romanian Carpathians: constraints on basin evolution. Tectonophysics 272(2–4):269–290

    Article  Google Scholar 

  • Laumonier M, Farla R, Frost DJ, Katsura T, Marquardt K, Bouvier AS, Baumgartner LP (2017) Experimental determination of melt interconnectivity and electrical conductivity in the upper mantle. Earth Planet Sci Lett 463:286–297

    Article  Google Scholar 

  • Li ZXA, Lee CTA, Peslier AH, Lenardic A, Mackwell SJ (2008) Water contents in mantle xenoliths from the Colorado Plateau and vicinity: Implications for the mantle rheology and hydration-induced thinning of continental lithosphere. J Geophys Res Solid Earth. https://doi.org/10.1029/2007JB005540

    Article  Google Scholar 

  • Liang Y, Sun C, Yao L (2013) A REE-in-two-pyroxene thermometer for mafic and ultramafic rocks. Geochim Cosmochim Acta 102:246–260

    Article  Google Scholar 

  • Linzer HG, Frisch W, Zweigel P, Girbacea R, Hann HP, Moser F (1998) Kinematic evolution of the Romanian Carpathians. Tectonophysics 297(1–4):133–156

    Article  Google Scholar 

  • Liptai N, Patkó L, Kovács IJ, Hidas K, Pintér Z, Jeffries T, Zajacz Z, O’Reilly SY, Griffin WL, Pearson NJ, Szabó C (2017) Multiple metasomatism beneath the Nógrád-Gömör Volcanic Field (Northern Pannonian Basin) revealed by upper mantle peridotite xenoliths. J Petrol 58(6):1107–1144

    Article  Google Scholar 

  • Mainprice D (1990) A FORTRAN program to calculate seismic anisotropy from the lattice preferred orientation of minerals. Comput Geosci 16(3):385–393

    Article  Google Scholar 

  • Martin M, Wenzel F (2006) High-resolution teleseismic body wave tomography beneath SE-Romania-II. Imaging of a slab detachment scenario. Geophys J Int 164(3):579–595

    Article  Google Scholar 

  • Matenco L, Bertotti G, Cloetingh SAPL, Dinu C (2003) Subsidence analysis and tectonic evolution of the external Carpathian-Moesian Platform region during Neogene times. Sed Geol 156(1–4):71–94

    Article  Google Scholar 

  • McDonough WF (1990) Constraints on the composition of the continental lithospheric mantle. Earth Planet Sci Lett 101:1–18

    Article  Google Scholar 

  • Mercier J-CC (1985) Ch. 19: olivine and pyroxenes. In: Wenk H-R (ed) Preferred orientation in deformed metals and rocks: an introduction to modern texture analysis. Academic Press, New York, pp 407–430

    Chapter  Google Scholar 

  • Mercier J-CC, Nicolas A (1975) Textures and fabrics of upper-mantle peridotites as illustrated by xenoliths from basalts. J Petrol 6:454–487

    Article  Google Scholar 

  • Miller KJ, Montési LG, Zhu WL (2015) Estimates of olivine–basaltic melt electrical conductivity using a digital rock physics approach. Earth Planet Sci Lett 432:332–341

    Article  Google Scholar 

  • Mutchler SR, Fedele L, Bodnar RJ (2008) Analysis management system (AMS) for reduction of laser ablation ICPMS data. In: Laser-ablation-ICPMS in the earth sciences: current practices and outstanding issues Mineralogical Association of Canada Quebec, vol 40, pp 318–327

  • Ni H, Keppler H, Behrens H (2011) Electrical conductivity of hydrous basaltic melts: implications for partial melting in the upper mantle. Contrib Miner Petrol 162(3):637–650

    Article  Google Scholar 

  • Nicolas A, Christensen NI (1987) Formation of anisotropy in upper mantle peridotites—a review. Compos Struct Dyn Lithosphere-Asthenosphere Syst 16:111–123

    Article  Google Scholar 

  • Novella D, Jacobsen B, Weber PK, Tyburczy JA, Ryerson FJ, Du Frane WL (2017) Hydrogen self-diffusion in single crystal olivine and electrical conductivity of the Earth’s mantle. Sci Rep 7(1):5344

    Article  Google Scholar 

  • Padrón-Navarta JA, Hermann J (2017) A subsolidus olivine water solubility equation for the Earth’s upper mantle. J Geophys Res Solid Earth 122(12):9862–9880

    Article  Google Scholar 

  • Panaiotu CG, Jicha BR, Singer BS, Ţugui A, Seghedi I, Panaiotu AG, Necula C (2013) 40Ar/39Ar chronology and paleomagnetism of Quaternary basaltic lavas from the Perşani Mountains (East Carpathians). Phys Earth Planet Inter 221:1–14

    Article  Google Scholar 

  • Pearce NJ, Perkins WT, Westgate JA, Gorton MP, Jackson SE, Neal CR, Chenery SP (1997) A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostand Newslett 21(1):115–144

    Article  Google Scholar 

  • Pécskay Z, Lexa J, Szakács A, Balogh Kad, Seghedi I, Konečný V, Kovács M, Márton M, Kaličiak M, Széky-Fux V, Póka T, Gyarmati P, Edelstein O, Rosu E, Žec B (1995) Space and time distribution of Neogene-Queternary volcanism in the Carpatho-Pannonian Region. Acta Vulcanol 7:15–28

    Google Scholar 

  • Peslier AH, Luhr JF (2006) Hydrogen loss from olivines in mantle xenoliths from Simcoe (USA) and Mexico: mafic alkalic magma ascent rates and water budget of the sub-continental lithosphere. Earth Planet Sci Lett 242(3–4):302–319

    Article  Google Scholar 

  • Peslier AH, Woodland AB, Bell DR, Lazarov M (2010) Olivine water contents in the continental lithosphere and the longevity of cratons. Nature 467(7311):78

    Article  Google Scholar 

  • Pike JN, Schwarzman EC (1977) Classification of textures in ultramafic xenoliths. J Geol 85(1):49–61

    Article  Google Scholar 

  • Poe BT, Romano C, Nestola F, Smyth JR (2010) Electrical conductivity anisotropy of dry and hydrous olivine at 8 GPa. Phys Earth Planet Inter 181(3–4):103–111

    Article  Google Scholar 

  • Popa M, Radulian M, Szakács A, Seghedi I, Zaharia B (2012) New seismic and tomography data in the southern part of the Harghita Mountains (Romania, Southeastern Carpathians): connection with recent volcanic activity. Pure appl Geophys 169(9):1557–1573

    Article  Google Scholar 

  • Pouchou JL, Pichoir F (1991) Quantitative analysis of homogeneous or stratified microvolumes applying the model “PAP”. In: Electron probe quantitation. Springer US, pp 31–75

  • Qorbani E, Bokelmann G, Kovács I, Horváth F, Falus G (2016) Deformation in the asthenospheric mantle beneath the Carpathian–Pannonian Region. J Geophys Res Solid Earth 121(9):6644–6657

    Article  Google Scholar 

  • Radulian M, Popa M, Cărbunar O, Rogozea M (2008) Seismicity patterns in Vrancea and predictive features. Acta Geod Geophys Hun 43(2–3):163–173

    Article  Google Scholar 

  • Ratschbacher L, Linzer HG, Moser F, Strusievicz RO, Bedelean H, Har N, Mogoş PA (1993) Cretaceous to Miocene thrusting and wrenching along the central South Carpathians due to a corner effect during collision and orocline formation. Tectonics 12(4):855–873

    Article  Google Scholar 

  • Rawlinson N, Reading AM, Kennett BL (2006) Lithospheric structure of Tasmania from a novel form of teleseismic tomography. J Geophys Res Solid Earth. https://doi.org/10.1029/2005JB003803

    Article  Google Scholar 

  • Seghedi I, Szakacs A (1994) Upper pliocene to quaternary basaltic volcanism in the Persani Mountains. Rom J Petrol 76:101–107

    Google Scholar 

  • Seghedi I, Maţenco L, Downes H, Mason PR, Szakács A, Pécskay Z (2011) Tectonic significance of changes in post-subduction Pliocene-Quaternary magmatism in the south east part of the Carpathian–Pannonian Region. Tectonophysics 502(1–2):146–157

    Article  Google Scholar 

  • Seghedi I, Popa RG, Panaiotu CG, Szakács A, Pécskay Z (2016) Short-lived eruptive episodes during the construction of a Na-alkalic basaltic field (Perşani Mountains, SE Transylvania, Romania). Bull Volcanol 78(10):69

    Article  Google Scholar 

  • Selway K (2014) On the causes of electrical conductivity anomalies in tectonically stable lithosphere. Surv Geophys 35(1):219–257

    Article  Google Scholar 

  • Selway K, Yi J, Karato SI (2014) Water content of the Tanzanian lithosphere from magnetotelluric data: implications for cratonic growth and stability. Earth Planet Sci Lett 388:175–186

    Article  Google Scholar 

  • Selway K, Ford H, Kelemen P (2015) The seismic mid-lithosphere discontinuity. Earth Planet Sci Lett 414:45–57

    Article  Google Scholar 

  • Sifré D, Gardés E, Massuyeau M, Hashim L, Hier-Majumder S, Gaillard F (2014) Electrical conductivity during incipient melting in the oceanic low-velocity zone. Nature 509(7498):81

    Article  Google Scholar 

  • Silver PG (1996) Seismic anisotropy beneath the continents: probing the depths of geology. Annu Rev Earth Planet Sci 24(1):385–432

    Article  Google Scholar 

  • Silver PG, Chan WW (1991) Shear wave splitting and subcontinental mantle deformation. J Geophys Res Solid Earth 96(B10):16429–16454

    Article  Google Scholar 

  • Stănică D, Stănică M (1993) An electrical resistivity lithospheric model in the Carpathian Orogen from Romania. Phys Earth Planet Inter 81(1–4):99–105

    Article  Google Scholar 

  • Stănică M, Stănică D, Marin-Furnica C (1999) The placement of the Trans-European Suture Zone on the Romanian territory by electromagnetic arguments. Earth Planets Space 51(10):1073–1078

    Article  Google Scholar 

  • Streckeisen A (1976) To each plutonic rock its proper name. Earth Sci Rev 12(1):1–33

    Article  Google Scholar 

  • Szabó C, Falus G, Zajacz Z, Kovács I, Bali E (2004) Composition and evolution of lithosphere beneath the Carpathian–Pannonian Region: a review. Tectonophysics 393(1):119–137

    Article  Google Scholar 

  • Taylor WR (1998) An experimental test of some geothermometer and geobaro-meter formulations for upper mantle peridotites with application to the thermobarometry of fertile lherzolite and garnet websterite. Neues Jahrbuch für Mineralogie-Abhandlungen 172(2):381–408

    Google Scholar 

  • Tommasi A, Vauchez A (2015) Heterogeneity and anisotropy in the lithospheric mantle. Tectonophysics 661:11–37

    Article  Google Scholar 

  • Tommasi A, Tikoff B, Vauchez A (1999) Upper mantle tectonics: three-dimensional deformation, olivine crystallographic fabrics and seismic properties. Earth Planet Sci Lett 168(1):173–186

    Article  Google Scholar 

  • Tondi R, Achauer U, Landes M, Daví R, Besutiu L (2009) Unveiling seismic and density structure beneath the Vrancea seismogenic zone, Romania. J Geophys Res Solid Earth. https://doi.org/10.1029/2008JB005992

    Article  Google Scholar 

  • Van Orman JA, Grove TL, Shimizu N (2001) Rare earth element diffusion in diopside: influence of temperature, pressure, and ionic radius, and an elastic model for diffusion in silicates. Contrib Miner Petrol 141(6):687–703

    Article  Google Scholar 

  • Vaselli O, Downes H, Thirlwall M, Dobosi G, Coradossi N, Seghedi I, Szakács A, Vannucci R (1995) Ultramafic xenoliths in Plio-Pleistocene alkali basalts from the Eastern Transylvanian Basin: depleted mantle enriched by vein metasomatism. J Petrol 36(1):23–53

    Article  Google Scholar 

  • Wagner LS, Anderson ML, Jackson JM, Beck SL, Zandt G (2008) Seismic evidence for orthopyroxene enrichment in the continental lithosphere. Geology 36(12):935–938

    Article  Google Scholar 

  • Wang D, Mookherjee M, Xu Y, Karato SI (2006) The effect of water on the electrical conductivity of olivine. Nature 443(7114):977

    Article  Google Scholar 

  • Wenzel F, Lorenz FP, Sperner B, Oncescu MC (1999) Seismotectonics of the Romanian Vrancea area. In: Vrancea earthquakes: tectonics, hazard and risk mitigation. Springer, Dordrecht, pp 15–25

    Chapter  Google Scholar 

  • Witt-Eickschen G, Seck HA (1991) Solubility of Ca and Al in orthopyroxene from spinel peridotite: an improved version of an empirical geothermometer. Contrib Miner Petrol 106(4):431–439

    Article  Google Scholar 

  • Wortel MJR, Spakman W (2000) Subduction and slab detachment in the Mediterranean-Carpathian region. Science 290(5498):1910–1917

    Article  Google Scholar 

  • Xia QK, Liu J, Kovács I, Hao YT, Li P, Yang XZ, Chen H, Sheng YM (2017) Water in the upper mantle and deep crust of eastern China: concentration, distribution and implications. Natl Sci Rev. https://doi.org/10.1093/nsr/nwx016

    Article  Google Scholar 

  • Yang X, Keppler H, McCammon C, Ni H, Xia Q, Fan Q (2011) Effect of water on the electrical conductivity of lower crustal clinopyroxene. J Geophys Res Solid Earth. https://doi.org/10.1029/2010JB008010

    Article  Google Scholar 

  • Yoshino T, Matsuzaki T, Shatskiy A, Katsura T (2009) The effect of water on the electrical conductivity of olivine aggregates and its implications for the electrical structure of the upper mantle. Earth Planet Sci Lett 288(1–2):291–300

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Topo-Transylvania community for the motivation overs the past years, especially Viktor Wesztergom, Eszter Szűcs and Sierd Cloetingh for their continuous support and motivation. We are grateful to Anna Maria Fioretti and Raúl Carampin for their help with EMPA analyses in Padua, Italy, and also to Bernardo Cesare for facilitation. Luca Fedele is thanked for helping with geochemical analyses at Virginia Tech. We also owe thanks to Robert J. Bodnar, who facilitated the measurements at Virginia Tech. This study was financially supported by a Bolyai Postdoctoral Fellowship program to IK, and a Lendület Research Grant to the Pannon LitH2Oscope Research group and an NKFIH K128122 grant of the Innovation, Research and Development Office. This work was completed in the ELTE Excellence Program (783-3/2018/FEKUTSRAT) supported by the Hungarian Ministry of Human Capacities. This research was supported by the Hungarian Science Foundation (OTKA, 78425) to Cs. Szabó. This is the 93d publication of the Lithosphere Fluid Research Lab (Eötvös University, Hungary).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to István Kovács.

Ethics declarations

Conflict of interest

All authors declare that there is no conflict of interest regarding the present manuscript.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovács, I., Patkó, L., Falus, G. et al. Upper mantle xenoliths as sources of geophysical information: the Perşani Mts. area as a case study. Acta Geod Geophys 53, 415–438 (2018). https://doi.org/10.1007/s40328-018-0231-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40328-018-0231-2

Keywords

Navigation