Skip to main content

On the tectono-stratigraphic evolution and hydrocarbon systems of extensional back-arc basins: inferences from 2D basin modelling from the Pannonian basin

Abstract

Two-dimensional basin modelling was carried out in the Pannonian basin of Central Europe to investigate the Miocene extension, post-rift evolution, and subsequent basin inversion and associated sedimentation. A tectono-sedimentary evolutionary model was constrained by seismic and well data. The simulated basin and petroleum systems model performed with petroleum systems modelling software package integrates the spatial and temporal variations of episodes of subsidence and uplift, sedimentation and erosion, and the dynamics of biogenic and thermogenic gas generation, migration, accumulation and loss. This high-resolution approach analysed the impact of the shelf-margin slope progradation and sequential sediment loading on mechanical compaction, pore pressure development, source rock maturation and hydrocarbon charge. Generation and migration processes were genetically controlled by the deposition of the SSE-ward prograding Pannonian (s.l.) shelf-margin slope sediments, and repeated tectonic inversions along the Mid-Hungarian Fault Zone. We tested different maturation kinetic models and compared the impact of different generation reaction schemes on charge. Biogenic gas generation was associated with the deposition of almost the entire sedimentary succession in the studied Jászság and Békés sub-basins. However, the preservation of the gases was limited in time and space. Most of the thermogenic gas was generated by the deepwater marls in the Békés sub-basin, whereas the depocentre of the Jászság sub-basin, mainly filled with Miocene rhyolites or rhyolitic tuffs connected to the intense volcanic activity, prevented the generation of significant amounts of hydrocarbon there.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  • Bada G, Horváth F, Dövényi P, Szafián P, Windhoffer G, Cloetingh S (2007) Present-day stress field and tectonic inversion in the Pannonian Basin. Global Planet Change 58(1–4):165–180

    Article  Google Scholar 

  • Badics B, Vető I (2012) Source rocks and petroleum systems in the Hungarian part of the Pannonian basin: the potential for shale gas and shale oil plays. Mar Pet Geol 31(1):53–69. https://doi.org/10.1016/j.marpetgeo.2011.08.015

    Article  Google Scholar 

  • Badics B, Uhrin A, Vető I, Bartha A, Cs Sajgó (2011) Basin-centred gas in the Makó Trough, Hungary: a 3D basin and petroleum system modelling investigation. Pet Geosci 17:405–416. https://doi.org/10.1144/1354-079310-063

    Article  Google Scholar 

  • Balázs A, Matenco L, Magyar I, Horváth F, Cloetingh S (2016) The link between tectonics and sedimentation in back-arc basins: new genetic constraints from the analysis of the Pannonian Basin. Tectonics 35:1526–1559. https://doi.org/10.1002/2015TC004109

    Article  Google Scholar 

  • Balázs A, Burov E, Matenco L, Vogt K, Francois T, Cloetingh S (2017a) Symmetry during the syn- and post-rift evolution of extensional back-arc basins: the role of inherited orogenic structures. Earth Planet Sci Lett 462:86–98

    Article  Google Scholar 

  • Balázs A, Magyar I, Matenco L, Sztanó O, Tőkés L, Horváth F (2017b) Morphology of a large paleo-lake: analysis of compaction in the Miocene-Quaternary Pannonian Basin. Glob Planet Change. https://doi.org/10.1016/j.gloplacha.2017.10.012

    Article  Google Scholar 

  • Balla Z (1986) Palaeotectonic reconstruction of the central Alpine-Mediterranean belt for the Neogene. Tectonophysics 127:213–243

    Article  Google Scholar 

  • Békési E, Lenkey L, Limberger J, Porkoláb K, Balázs A, Bonté D, Vrijlandt M, Horváth F, Cloetingh S, van Wees J-D (2017) Subsurface temperature model of the Hungarian part of the Pannonian Basin. Global Planet Change. https://doi.org/10.1016/j.gloplacha.2017.09.020

    Article  Google Scholar 

  • Bérczi I, Phillips RL (1985) Process and depositional environments within Neogene deltaic-lacustrine sediments, Pannonian Basin, Southeast Hungary. Geophys Trans 31:55–74

    Google Scholar 

  • Clayton JL, Spencer CW, Koncz I, Szalay Á (1990) Origin and migration of hydrocarbon gases and carbon dioxide, Békés Basin, southeastern Hungary. Org Geochem 15(3):233–247

    Article  Google Scholar 

  • Cloetingh S, Burov E, Matenco L, Beekman F, Roure F, Ziegler PA (2013) The Moho in extensional tectonic settings: insights from thermo-mechanical models. Tectonophysics 609:558–604

    Article  Google Scholar 

  • Csató I, Tóth S, Catuneanu O, Granjeon D (2015) A sequence stratigraphic model for the Upper Miocene-Pliocene basin fill of the Pannonian Basin, eastern Hungary. Mar Pet Geol 66:117–134

    Article  Google Scholar 

  • Csizmeg J, Juhász G, Milota K, Pogácsás G (2011) Subsidence, thermal and maturity history of late Miocene to quaternary formations in the Pannonian Basin. In: Abstract book of AAPG international convention and exhibition, Milan, Italy, Oct 23–26

  • Csontos L, Nagymarosy A (1998) The Mid-Hungarian line: a zone of repeated tectonic inversion. Tectonophysics 297:51–72

    Article  Google Scholar 

  • Czauner B, Mádl-Szőnyi J (2013) Regional hydraulic behavior of structural zones and sedimentological heterogeneities in an overpressured sedimentary basin. Mar Pet Geol 48:260–274

    Article  Google Scholar 

  • Dombrádi E, Sokoutis D, Bada G, Cloetingh S, Horváth F (2010) Modelling recent deformation of the Pannonian lithosphere: lithospheric folding and tectonic topography. Tectonophysics 484(1–4):103–118

    Article  Google Scholar 

  • Dövényi P (1994) A Pannon-medence litoszférájának geofizikai vizsgálata. MTA Doktori értekezés. ELTE Geofizikai Tanszék, Budapest, p 127 (In Hungarian)

    Google Scholar 

  • Dövényi P, Horváth F (1988) A review of temperature, thermal conductivity, and heat flow data for the Pannonian Basin. In: Royden L, Horváth F (eds) The Pannonian Basin, A Study in Basin Evolution, AAPG Memoir, vol 45. AAPG and The Hungarian Geological Society, 195–233

  • Duan Z, Mao S (2006) A thermodynamic model for calculating methane solubility, density and gas phase composition of methane-bearing aqueous fluids from 273 to 523 K and from 1 to 2000 bar. Geochim Cosmochim Acta 70:3369–3386

    Article  Google Scholar 

  • Fodor L, Bada G, Csillag G, Horvath E, Zs Ruszkiczay-Rudiger, Palotas K, Sikhegyi F, Timar G, Cloetingh S (2005) An outline of neotectonic structures and morphotectonics of the western and central Pannonian Basin. Tectonophysics 410:15–41

    Article  Google Scholar 

  • Galushkin YI (1997) Thermal effects of igneous intrusions on maturity of organic matter: a possible mechanism of intrusion. Org Geochem 26(11–12):645–658

    Article  Google Scholar 

  • Grow JA, Mattick RE, Bérczi-Makk A, Péró CS, Hajdú D, Pogácsás GY, Várnai P, Varga E (1994) Structure of the Békés basin inferred from seismic reflection, well and gravity data. In: Teleki PG et al (eds) Basin analysis in petroleum exploration. Kluwer Academic Publishers, Dordecht, pp 201–218

    Google Scholar 

  • Haas J, Budai T, Csontos L, Fodor L, Konrád GY (eds) (2010) Magyarország prekainozoos földtani térképe 1:500000 (Pre-Cenozoic geological map of Hungary, 1:500000). Geological Institute of Hungary

  • Hantschel T, Kauerauf A (2009) Fundamentals of basin and petroleum systems modeling. Springer, Berlin, p 476

    Google Scholar 

  • Harvey LDD, Huang Z (1995) Evaluation of the potenial impact of methane clathrate destabilization on future global warming. J Geophys Res 100:2905–2926

    Article  Google Scholar 

  • Hellinger SJ, Sclater JG (1983) Some comments on two-layer extensional models for the evolution of sedimentary basins. J Geophys Res 88:8251–8270

    Article  Google Scholar 

  • Horváth F, Dövényi P (1988) Subsidence, thermal, and maturation history of the Great Hungarian plain. In: Royden L, Horváth F (eds) The pannonian basin, a study in basin evolution, AAPG Memoir, vol 45. AAPG and The Hungarian Geological Society, pp 355–372

  • Horváth F, Musitz B, Balázs A, Végh A, Uhrin A, Nádor A, Koroknai B, Pap N, Tóth T, Wórum G (2015) Evolution of the Pannonian basin and its geothermal resources. Geothermics 53:328–352

    Article  Google Scholar 

  • Jin Q, Xiong S, Lu P (1999) Catalysis and hydrogenation: volcanic activity and hydrocarbon generation in rift basins, Eastern China. Appl Geochem 14:547–558

    Article  Google Scholar 

  • Juhász G (1991) Lithostratigraphical and sedimentological framework of the Pannonian (s.l.) sedimentary sequence in the Hungarian Plain (Alföld), Eastern Hungary. Acta Geologica Hungarica 34:53–72

    Google Scholar 

  • Kovác M, Andreyeva-Grigorovich A, Bajraktarevic Z, Brzobohatý R, Filipescu S, Fodor L, Harzhauser M, Nagymarosy A, Oszczypko N, Pavelic D (2007) Badenian evolution of the Central Paratethys Sea: paleogeography, climate and eustatic sea-level changes. Geol Carpath 58:579–606

    Google Scholar 

  • Krooss BM (1987) Experimental investigation of the diffusion of low-molecular weight hydrocarbons in sedimentary rocks. In Doligez B (ed) 2nd IFP Expl. Res. conference on proceedings of migration of hydrocarbons in sedimentary basins, pp 329–351

  • Kuuskraa V, Stevens S, Van Leeuwen T, Moodhe K (2011) World shale gas resources: an initial assessment of 14 regions outside the United States, Advanced Resources International, Inc., prepared for: US Energy Information Administration, US Department of Energy, Washington DC 20585, USA. www.adv-res.com

  • Lenkey L, Dovenyi P, Horvath F, Cloetingh SAPL (2002) Geothermics of the Pannonian basin and its bearing on the neotectonics. In: Cloetingh S, Horvath F, Bada G, Lankreijer A (eds) Neotectonics and surface processes: the Pannonian basin and alpine/carpathians system. European Geosciences Union, Stephan Mueller Special Publication Series 3:29–40

  • Lukács R, Sz Harangi, Guillong M, Bachmann O, Fodor L, Buret Y, Dunkl I, Sliwinski J, Quadt A, Peytcheva I, Zimmerer M (2018) Early to Mid-Miocene syn-extensional massive silicic volcanism in the Pannonian Basin (East-Central Europe): eruption chronology, correlation potential and geodynamic implications. Earth Sci Rev 179:1–19

    Article  Google Scholar 

  • Magyar I, Sztanó O (2008) Is there a Messinian unconformity in the Central Paratethys? Stratigraphy 5:245–255

    Google Scholar 

  • Magyar I, Geary DH, Müller P (1999) Paleogeographic evolution of the Late Miocene Lake Pannon in Central Europe. Palaeogeogr Palaeoclimatol Palaeoecol 147:151–167

    Article  Google Scholar 

  • Magyar I, Fogarasi A, Vakarcs G, Bukó L, Tari GC (2006) The largest hydrocarbon field discovered to date in Hungary: Algyő. In: Golonka J, Picha FJ (eds) The Carpathians and their foreland: geology and hydrocarbon resources: AAPG Memoir 84:619–632

  • Magyar I, Radivojevic D, Sztanó O, Synak R, Újszászi K, Pócsik M (2013) Progradation of the paleo-Danube shelf margin across the Pannonian Basin during the Late Miocene and Early Pliocene. Glob Plan Change 103:168–173

    Article  Google Scholar 

  • Matenco L, Radivojević D (2012) On the formation and evolution of the Pannonian basin: constraints derived from the structure of the junction area between the Carpathians and Dinarides. Tectonics 31(6):TC6007

    Article  Google Scholar 

  • Mattavelli L, Novelli L (1988) Geochemistry and habitat of natural gases in Italy. Org Geochem 13(1–3):1–13

    Article  Google Scholar 

  • Matthews MD (1999) Migration of petroleum. In: Beaumont EA, Foster NH (eds) AAPG treatise of petroleum geology: exploring for oil and gas traps, chap 7, p 31

  • McKenzie D (1978) Some remarks on the development of sedimentary basins. Earth Planet Sci Lett 40:25–32

    Article  Google Scholar 

  • Nagymarosy A, Hámor G (2012) Genesis and evolution of the Pannonian Basin. In: Haas J (ed) Geology of Hungary, regional geology reviews. Springer, Berlin, pp 149–200

    Google Scholar 

  • Nielsen SB, Clausen OR, McGregor E (2015) basin%Ro: a vitrinite reflectance model derived from basin and laboratory data. Basin Res 29:515–536

    Article  Google Scholar 

  • Pécskay Z, Lexa J, Szakács A, Seghedi I, Balogh K, Konecny V, Zelenka T, Kovacs M, Póka T, Fülöp A, Márton E, Panatiotu C, Cvetkovic V (2006) Geochronol-ogy of Neogene magmatism in the Carpathian arc and intra-Carpathian area. Geol Carpathica 57:511–530

    Google Scholar 

  • Peters K, Nelson P (2009) Criteria to determine borhole formation temperatures for calibration of basin and petroleum systems models. Search Discov. Article No. 40463

  • Peters K, Curry D, Kacewicz M (2012) Basin modeling: new horizons in research and applications, AAPG Hedberg Series 4, AAPG, p 338

  • Peters KE, Burnham AK, Walters CC, Schenk O (2017) Guidelines for kinetic input to basin and petroleum system models. Search Discov. Article no. 42112

  • Pogácsás G, Lakatos L, Révész I, Ujszászi K, Vakarcs G, Várkonyi L, Várnai P (1988) Seismic facies, electro facies and Neogene sequence chronology of the Pannonian Basin. Acta Geol Hung 31:175–207

    Google Scholar 

  • Ritter U, Duddy I, Mørk A, Johansen H, Arne D (1996) Temperature and uplift history of Bjørnøya (Bear Island), Barents Sea. Pet Geosci 2:133–144

    Article  Google Scholar 

  • Roure F, Roca E, Sassi W (1993) The Neogene evolution of the outer Carpathian flysch units (Poland, Ukraine and Romania): kinematics of a foreland/fold-and-thrust belt system. Sed Geol 86:177–201

    Article  Google Scholar 

  • Royden L, Keen CE (1980) Rifting processes and thermal evolution of the continental margin of eastern Canada determined from subsidence curves. Earth Planet Sci Lett 51:343–361

    Article  Google Scholar 

  • Sacchi M, Horváth F, Magyari O (1999) Role of unconformity-bounded units in the stratigraphy of the continental record: a case study from the late Miocene of the western Pannonian Basin, Hungary. In: Durand B et al. (ed) The mediterranean basins: extension within the Alpine Orogen. Geol Soc Spec Publ. 156:357–390

  • Saftić B, Velic J, Sztanó O, Gy Juhász, Ivkovic Z (2003) Tertiary subsurface facies, source rocks and Hydrocarbon reservoirs in the SW part of the Pannonian Basin (Northern Croatia and South-Western Hungary). Geologica Croatica 56:101–122

    Google Scholar 

  • Saša I, Radivojević D (2017) Upper Miocene depositional environments of the Kikinda-Mokrin High (Serbia). Interpretation 6:65–76. https://doi.org/10.1190/INT-2017-0084.1

    Article  Google Scholar 

  • Schenk O, Peters K, Burnham A (2017) Evaluation of alternatives to Easy%Ro for calibration of basin and petroleum system models. In: 79th EAGE conference & exhibition 2017 Paris, France, 12–15 June 2017, p 5

  • Schmid SM, Bernoulli D, Fugenschuh B, Matenco L, Schefer S, Schuster R, Tischler M, Ustaszewski K (2008) The Alpine-Carpathian-Dinaridic orogenic system: correlation and evolution of tectonic units. Swiss J Geosci 101:139–183

    Article  Google Scholar 

  • Spencer CW, Szalay Á, Tatár É (1994) Abnormal pressure and hydrocarbon migration in the Békés Basin. In: Teleki PG, Mattick RE, Kókai J (eds) Basin analysis in petroleum exploration: a case study from the Békés basin. Springer, Hungary, pp 201–219

    Chapter  Google Scholar 

  • Sweeney JJ, Burnham AK (1990) Evaluation of a simple model of vitrinite reflectance based on chemical kinetics. AAPG Bull 74(10):1559–1570

    Google Scholar 

  • Szalay Á (1982) A rekonstrukciós szemléletű földtani kutatás lehetőségei a szénhidrogén perspektívák előrejelzésében a DK-Alföld neogén süllyedékek területén (Possibilities of conceptual hydrocarbon exploration based on dynamic structural restoration in the prediction of hydrocarbon potential of Neogene depocenters in SE Hungary). PhC (Candidate in Philpsophy) Thesis, Hungarian Academy of Sciences, Budapest, p 146

  • Szalay Á (1988) Maturation and migration of hydrocarbons in the south-eastern Pannonian Basin. In: Royden L, Horváth F (eds) The Pannonian basin, a study in basin evolution, AAPG Memoir, vol 45. AAPG and The Hungarian Geological Society, pp 347–354

  • Sztanó O, Szafián P, Magyar I, Horányi A, Bada G, Hughes DW, Hoyer DL, Wallis RJ (2013) Aggradation and progradation controlled clinothems and deep-water sand delivery model in the Neogene Lake Pannon, Makó Trough, Pannonian Basin, SE Hungary. Glob Planet Change 103:149–167

    Article  Google Scholar 

  • Tari GC, Horvath F (2006) Alpine evolution and hydrocarbon geology of the Pannonian Basin: An overview. In: Golonka J, Picha FJ (eds) The Carpathians and their foreland: Geology and hydrocarbon resources: AAPG Memoir 84:605–618

  • Tari G, Dövényi P, DunkI I, Horváth F, Lenkey L, Stefănescu M, Szafián P, Tóth T (1999) Lithospheric structure of the Pannonian Basin derived from seismic, gravity and geothermal data. In: Durand B, Jolivet L, Horváth F, Sérrane M (eds) The mediterranean basins: tertiary extension within the Alpine Orogen. Geological Society, London, Special Publications 156:215–250

  • ter Borgh M, Radivojević D, Matenco L (2015) Constraining forcing factors and relative sea-level fluctuations in semi-enclosed basins: the Late Neogene demise of Lake Pannon. Basin Res. https://doi.org/10.1111/bre.12094

    Article  Google Scholar 

  • Uhrin A, Sztanó O (2011) Water-level changes and their effect on deep-water sand accumulation in a lacustrine system: a case study from the Late Miocene of western Pannonian Basin, Hungary. Int J Earth Sci 101(5):1427–1440

    Article  Google Scholar 

  • Uhrin A, Magyar I, Sztanó O (2009) Effect of basement deformation on the Pannonian sedimentation of the Zala Basin, SW Hungary. Földtani Közlöny 139:273–282

    Google Scholar 

  • Ustaszewski K, Schmid S, Fügenschuh B, Tischler M, Kissling E, Spakman W (2008) A map-view restoration of the Alpine-Carpathian-Dinaridic system for the Early Miocene. Swiss J Geosci 101:273–294. https://doi.org/10.1007/s00015-008-1288-7

    Article  Google Scholar 

  • Vakarcs G, Vail PR, Tari G, Gy Pogácsás, Mattick RE, Szabó A (1994) Third-order Middle Miocene-Early Pliocene depositional sequences in the prograding delta complex of the Pannonian Basin. Tectonophysics 240:81–106

    Article  Google Scholar 

  • Vető I, Futó I, Horváth I, Szántó Z (2004) Late and deep fermentative methanogenesis as reflected in the H-C-O-S isotopy of the methane-water system in deep aquifers of the Pannonian Basin (SE Hungary). Org Geochem 35:713–723

    Article  Google Scholar 

  • Wang K, Lu X, Chen M, Ma Y, Liu K, Liu L, Li X, Hu W (2012) Numerical modelling of the hydrocarbon generation of Tertiary source rocks intruded by doleritic sills in the Zhanhua depression, Bohai Bay Basin. China. Basin Research 24(2):234–247

    Article  Google Scholar 

  • Wygrala B (1989) Integrated study of an oil field in the South Po Basin, Northern Italy. PhD dissertation, University of Cologne, p 217

  • Xie X, Heller PL (2009) Plate tectonics and basin subsidence history. GSA Bull 121:55–64. https://doi.org/10.1130/B26398.1

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Schlumberger for providing access to PetroMod® software. Bjorn Wygrala, Oliver Schenk, Duplo Kornpihl, Daniel Palmowski and Thorsten Joppen are warmly thanked for their insightful comments and constructive remarks. Reviews by an anonymous reviewer and the Editor, Viktor Wesztergom are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Attila Balázs.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bartha, A., Balázs, A. & Szalay, Á. On the tectono-stratigraphic evolution and hydrocarbon systems of extensional back-arc basins: inferences from 2D basin modelling from the Pannonian basin. Acta Geod Geophys 53, 369–394 (2018). https://doi.org/10.1007/s40328-018-0225-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40328-018-0225-0

Keywords

  • Pannonian basin
  • Basin and petroleum system modelling
  • Basin inversion
  • Thermogenic gas
  • Biogenic gas