Possible mechanisms of co-seismic electromagnetic effect

Abstract

We analyze theoretically two possible sources of co-seismic electromagnetic response to the propagation of various types of seismic waves caused either by the electrokinetic phenomena or geomagnetic inductive effect. The differences between these two generation mechanisms have been examined for different types of seismic waves (P, S, and Rayleigh-Love). Theoretical relationships describing the dependence of the co-seismic signal amplitude, polarization and apparent impedance on the earthquake seismic moment and magnitude have been derived as a function of distance. We indicate an observational possibility to discriminate seismo-electrokinetic and seismo-magnetic effects and to estimate their contribution into a recorded co-seismic electromagnetic signal. Magnitudes and polarization of these signals are shown to depend strongly on the type of seismic wave and local crust parameters, such as streaming potential coupling coefficient, conductivity, inhomogeneity, etc. Co-seismic electromagnetic signals, though not directly applied for earthquake prediction, contain a useful information on local crustal phenomena, and can be used to identify “sensitive” zones perspective for the monitoring of precursory electromagnetic disturbances.

This is a preview of subscription content, log in to check access.

Fig. 1

References

  1. Aki K, Richards P (2002) Quantitative Seismology, 2nd edn. University Science Books, Sausalito, p 932

    Google Scholar 

  2. Anisimov SV, Gokhberg MB, Ivanov EA et al (1985) Short period vibrations of the Earth’s electromagnetic field due to industrial explosion. Rep USSR Acad Sci 281(3):556–559

    Google Scholar 

  3. Bockris JOM, Reddy AKN (1970) Modern electrochemistry. Plenum, New York, pp 623–843

    Google Scholar 

  4. Dobrovolsky IP, Gershenzon NI, Gokhberg MB (1989) Theory of electrokinetic effects occurring at the final state in the preparation of a tectonic earthquake. Phys Earth Planet Inter 57:144–156

    Article  Google Scholar 

  5. Eleman F (1965) The response of magnetic instruments to earthquake waves. J Geomagn Geoelectr 18:43–72

    Article  Google Scholar 

  6. Fedorov E, Pilipenko V, Uyeda S (2001) Electric and magnetic fields generated by electrokinetic processes in a conductive crust. Phys Chem Earth 26:793–799

    Article  Google Scholar 

  7. Fitterman DV (1978) Electrokinetic and magnetic anomalies associated with dilatant regions in a layered earth. J Geophys Res 83:5923–5928

    Article  Google Scholar 

  8. Fitterman DV (1979a) Theory of electrokinetic-magnetic anomalies in a faulted half-space. J Geophys Res 84:6031–6040

    Article  Google Scholar 

  9. Fitterman DV (1979b) Calculations of self-potential anomalies near vertical contacts. Geophysics 44:195–205

    Article  Google Scholar 

  10. Frenkel YAI (1944) On the theory of seismic and seismoelectric phenomena in a moist soil. J Phys (USSR) 8:230–241

    Google Scholar 

  11. Gershenzon NI, Bambakidis G, Ternovskiy I (2014) Coseismic electromagnetic field due to the electrokinetic effect. Geophysics 79:E217–E229

    Article  Google Scholar 

  12. Gorbachev LP, Surkov VV (1987) Perturbation of an external magnetic field by a Rayleigh surface wave. Magnetohydrodynamics 23:117–125

    Google Scholar 

  13. Guglielmi AV (1986) Excitation of electromagnetic field oscillations by elastic waves in conducting body. Geomagn Aeron 27:467–470

    Google Scholar 

  14. Guglielmi AV (1991) Magnetic structure of the elastic wave front in conductive media. Izv Akad Nauk SSSR Ser Fiz Zemli 4:753–758

    Google Scholar 

  15. Guglielmi AV, Ruban VF (1990) On the theory of the seismomagnetic induction effect. Izv Akad Nauk SSSR Ser Fiz Zemli N5:47–54

    Google Scholar 

  16. Guglielmi A, Hayakawa M, Potapov A, Tsegmed B (2006) Polarization method to detect the co-seismic magnetic oscillations. Phys Chem Earth 31:299–304

    Article  Google Scholar 

  17. Honkura Y, Matsushima M, Oshiman N et al (2002) Small electric and magnetic signals observed before the arrival of seismic wave. Earth Planets Space 54:e9–e12

    Article  Google Scholar 

  18. Huang Q, Ren H, Zhang D, Chen YJ (2015) Medium effect on the characteristics of the coupled seismic and electromagnetic signals. Proc Jpn Acad Ser B Phys Biol Sci 91:17–24

    Article  Google Scholar 

  19. Ivanov AG (1939) Effect of electrization of earth layers by elastic waves passing through them. Proc USSR Acad Sci 24:42–45

    Google Scholar 

  20. Ivanov AG (1940) Seismoelectric effect of the second kind. Proc USSR Acad Sci Ser Geogr Geophys 4:699–726

    Google Scholar 

  21. Iyemori T, Kamei T, Tanaka Y et al (1996) Co-seismic geomagnetic variations observed at the 1995 Hyogoken–Nanbu earthquake. J Geomagn Geoelectr 48:1059–1070

    Article  Google Scholar 

  22. Johnston MJS (1978) Tectonomagnetic effects. Earthq Inf Bull (USGS) 10:82–87

    Google Scholar 

  23. Jouniaux L, Bernard ML, Zamora M, Pozzi JP (2000) Streaming potential in volcanic rocks from Mount Pelée. J Geophys Res 105:8391–8401

    Article  Google Scholar 

  24. Kaliski S (1960) Solution of the equation of motion in a magnetic field for an isotropic body in an infinite space assuming perfect electric conductivity. Proc Vibr Probl 1(3):53–67

    Google Scholar 

  25. Kanamori H, Anderson DL (1975) Theoretical basis of some empirical relations in seismology. Bull Seism Soc Am 65:1073–1095

    Google Scholar 

  26. Knopoff EL (1955) The interaction between elastic waves motion and a magnetic field in electrical conductors. J Geophys Res 60:617–629

    Article  Google Scholar 

  27. Landau LD, Lifshitz EM (1960) Electrodynamics of continuous media. In: Course of theoretical physics, vol 8. Pergamon Press, Oxford

  28. Landau LD, Lifshitz EM (1970) Theory of elasticity. In: Course of theoretical physics, vol 7. Pergamon Press, Oxford

  29. Martner ST, Sparks NR (1959) The electroseismic effect. Geophysics 24:297–308

    Article  Google Scholar 

  30. Mavko G, Mukerji T, Dvorkin T (2014) The rock physics handbook: tools for seismic analysis of porous media, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  31. Molchanov OA, Hayakawa M (2008) Seismo-electromagnetics and related phenomena: history and latest results. TERRAPUB, Tokyo, p 189

    Google Scholar 

  32. Molchanov O, Kulchitsky A, Hayakawa M (2001) Inductive seismo-electromagnetic effect in relation to seismogenic ULF emission. Nat Hazards Earth Syst Sci 1:61–67

    Article  Google Scholar 

  33. Molchanov O, Kulchitsky A, Hayakawa M (2002) ULF emission due to inductive seismo-electromagnetic effect. In: Hayakawa M, Molchanov OA (eds) Seismo-electromagnetics: lithosphere-atmosphere-ionosphere coupling. TERRARUB, Tokyo, pp 153–162

    Google Scholar 

  34. Morgan FD, Williams ER, Madden TR (1989) Streaming potential properties of Westerly granite with applications. J Geophys Res 94:12449–12461

    Article  Google Scholar 

  35. Nagao T, Orihara Y, Yamaguchi T et al (2000) Co-seismic geoelectric potential changes observed in Japan. Geophys Res Lett 27:1535–1538

    Article  Google Scholar 

  36. Pilipenko V, Fedorov E (2014) Coupling mechanism between geoacoustic emission and electromagnetic anomalies prior to earthquakes. Res Geophys 4:5008. https://doi.org/10.4081/rg.2014.5008

    Google Scholar 

  37. Pilipenko V, Nenovski P, Tanaka H (2003) Detection and discrimination of VLF/ULF seismic-related electromagnetic emissions. Bulg Geophys J 29:13–30

    Google Scholar 

  38. Pride SR (1994) Governing equations for the coupled electromagnetics and acoustics of porous media. Phys Rev B 50:15678–15696

    Article  Google Scholar 

  39. Pride SR, Garambois S (2005) Electroseismic wave theory of Frenkel and more recent developments. J Eng Mech 131:898–907

    Article  Google Scholar 

  40. Shaidurov GYA, Potylitsyn VS, Kudinov DS (2016) Phase-induced polarization method based on processing noise signals of the natural electromagnetic field of the earth. Rus Geol Geophys 57:1371–1376

    Article  Google Scholar 

  41. Sparnaay MJ (1972) The electrical double layer. Pergamon Press, New York, p 415

    Google Scholar 

  42. Surkov VV (1989) Perturbation of an external magnetic field by a longitudinal acoustic wave. Magnetohydrodynamics 25:145–148

    Google Scholar 

  43. Surkov VV (1997) The electromagnetic precursor of a seismic wave. Geomagn Aeron 37:792–796

    Google Scholar 

  44. Surkov V, Hayakawa M (2014) Ultra and extremely low frequency electromagnetic fields, springer geophysics series, vol XVI. Springer, Berlin, p 486

    Google Scholar 

  45. Surkov VV, Pilipenko VA (1997) Magnetic effects due to earthquakes and underground explosions: a review. Ann Geophys 40(2):227–239. https://doi.org/10.4401/ag-3904

    Google Scholar 

  46. Surkov VV, Pilipenko VA (2015) Estimate of ULF electromagnetic noise caused by a fluid flow during seismic or volcano activity. Ann Geophys 58(6):S0655. https://doi.org/10.4401/ag-6767

    Google Scholar 

Download references

Acknowledgements

This study is supported by the Grant No 15-55-45064 from the Russian Foundation for Basic Sciences (VAP, AKS) and by the Competitiveness Program of NRNU MEPhI (VVS). We appreciate useful comments of both reviewers.

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. A. Pilipenko.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Surkov, V.V., Pilipenko, V.A. & Sinha, A.K. Possible mechanisms of co-seismic electromagnetic effect. Acta Geod Geophys 53, 157–170 (2018). https://doi.org/10.1007/s40328-018-0211-6

Download citation

Keywords

  • Co-seismic effect
  • Electrokinetic phenomena
  • Geomagnetic inductive effect
  • Earthquake
  • Geophysical prospecting