Skip to main content
Log in

Modelling Moho depth in ocean areas based on satellite altimetry using Vening Meinesz–Moritz’ method

  • Published:
Acta Geodaetica et Geophysica Aims and scope Submit manuscript

Abstract

An experiment for estimating Moho depth is carried out based on satellite altimetry and topographic information using the Vening Meinesz–Moritz gravimetric isostatic hypothesis. In order to investigate the possibility and quality of satellite altimetry in Moho determination, the DNSC08GRA global marine gravity field model and the DTM2006 global topography model are used to obtain a global Moho depth model over the oceans with a resolution of 1° × 1°. The numerical results show that the estimated Bouguer gravity disturbance varies from 86 to 767 mGal, with a global average of 747 mGal, and the estimated Moho depth varies from 3 to 39 km with a global average of 19 km. Comparing the Bouguer gravity disturbance estimated from satellite altimetry and that derived by the gravimetric satellite-only model GOGRA04S shows that the two models agree to 13 mGal in root mean square (RMS). Similarly, the estimated Moho depths from satellite altimetry and GOGRA04S agree to 0.69 km in RMS. It is also concluded that possible mean dynamic topography in the marine gravity model does not significantly affect the Moho determination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Andersen OB, Knudsen P, Berry PA (2010) The DNSC08GRA global marine gravity field from double retracked satellite altimetry. J Geod 84(3):191–199

    Article  Google Scholar 

  • Bagherbandi M, Sjöberg LE (2012) Non-isostatic effects on crustal thickness: a study using CRUST2.0 in Fennoscandia. Phys Earth Planet Inter 200:37–44

    Article  Google Scholar 

  • Bagherbandi M, Sjöberg LE (2013) Improving gravimetric-isostatic models of crustal depth by correcting for non-isostatic effects and using CRUST2.0. Earth Sci Rev 117:29–39. doi:10.1016/j.earscirev.2012.12.002

    Article  Google Scholar 

  • Bagherbandi M, Tenzer R, Sjöberg LE, Novák P (2013) Improved global crustal thickness modeling based on the VMM isostatic model and non-isostatic gravity correction. J Geodyn 66:25–37

    Article  Google Scholar 

  • Bassin C, Laske G, Masters TG (2000) The current limits of resolution for surface wave tomography in North America. EOS Trans AGU 81:F897

    Google Scholar 

  • Bouman J, Ebbing J, Meekes S, Abdul Fattah R, Fuchs M, Gradmann S, Bosch W (2013) GOCE gravity gradient data for lithospheric modeling. Int J Appl Earth Obs Geoinf 35:16–30

    Article  Google Scholar 

  • Deng X, Griffin DA, Ridgway K, Church JA, Featherstone WE, White NJ, Cahill M (2011) Satellite altimetry for geodetic, oceanographic, and climate studies in the Australian region. Coastal altimetry. Springer, Berlin, pp 473–508

    Chapter  Google Scholar 

  • Heiskanen WA, Moritz H (1967) Physical geodesy. W. H. Freeman, New York

    Google Scholar 

  • Hwang C, Parsons B (1996) A optimal procedure for deriving marine gravity from multi-satellite altimetry. J Geophys Int 125:705–719

    Article  Google Scholar 

  • Janjić T, Schröter J, Savcenko R, Bosch W, Albertella A, Rummel R, Klatt O (2012) Impact of combining GRACE and GOCE gravity data on ocean circulation estimates. Ocean Sci 8(1):65–79

    Article  Google Scholar 

  • Laske G, Masters G, Ma Z, Pasyanos ME (2013), A new global crustal model at 1 × 1 degrees (CRUST1.0). (http://igppweb.ucsd.edu/~gabi/crust1.html)

  • Lebedev S, Adam JMC, Meier T (2013) Mapping the Moho with seismic surface waves: a review, resolution analysis, and recommended inversion strategies. Tectonophysics 609:377–394

    Article  Google Scholar 

  • Meier U, Curtis A, Trampert J (2007) Global crustal thickness from neural network inversion of surface wave data. Geophys J Int 169(2):706–722

    Article  Google Scholar 

  • Moritz H (1990) The figure of the Earth. H Wichmann, Karlsruhe

    Google Scholar 

  • Moritz H (2000) Geodetic reference system 1980. J Geod 74:128–162

  • Pasyanos M, Masters G, Laske G, Ma Z (2012) Litho1.0—an updated crust and lithospheric model of the Earth developed using multiple data constraints. Fall Meeting, AGU, San Francisco, Calif., Abstract: 3–7 Dec, 2012. 2.4

  • Rapp RH (1980) A comparison of altimeter and gravimetric geoids in the Tonga Trench and Indian Ocean areas. Bull Géod 54(2):149–163

    Article  Google Scholar 

  • Reguzzoni M, Sampietro D (2014) GEMMA: An Earth crustal model based on GOCE satellite data. Int J Appl Earth Obs Geoinf 35:31–43

    Article  Google Scholar 

  • Reguzzoni M, Sampietro D, Sansò F (2013) Global Moho from the combination of the CRUST2.0 model and GOCE data. Geophys J Int 195:222–237

    Article  Google Scholar 

  • Sampietro D, Reguzzoni M, Braitenberg C (2014) The GOCE estimated Moho beneath the Tibetan Plateau and Himalaya. Earth on the edge: science for a sustainable planet. Springer, Berlin, pp 391–397

    Chapter  Google Scholar 

  • Shapiro NM, Ritzwoller MH (2002) Monte-Carlo inversion for a global shear-velocity model of the crust and upper mantle. Geophys J Int 151:88–105

    Article  Google Scholar 

  • Sjöberg LE (1998a) The exterior Airy/Heiskanen topographic-isostatic gravity potential anomaly and the effect of analytical continuation in Stokes’ formula. J Geod 72:654–662

    Article  Google Scholar 

  • Sjöberg LE (1998b) On the Pratt and Airy models of isostatic geoid undulations. J Geod 26(1):137–147

    Article  Google Scholar 

  • Sjöberg LE (2009) Solving Vening Meinesz–Moritz inverse problem in isostasy. Geophys J Int 179(3):1527–1536. doi:10.1111/j.1365-246X.2009.04397.x

    Article  Google Scholar 

  • Sjöberg LE (2013) On the isostatic gravity disturbance and disturbance and their applications to Vening Meinesz–Moritz gravimetric inverse problem. Geophys J Int 193(3):1277–1282

    Article  Google Scholar 

  • Tenzer R, Bagherbandi M (2012) Reformulation of the Vening-Meinesz Moritz inverse problem of isostasy for isostatic gravity disturbances. Int J Geosci 2012(3):918–929. doi:10.4236/ijg.2012.325094

    Article  Google Scholar 

  • Tenzer, R., Chen, W., Tsoulis, D., Bagherbandi, M., Sjöberg, L.E., Novák, P. (2014), Spectral and spatial characteristics of the refined CRUST1.0 gravity field. Submitted to Surveys in Geophysics

  • Vening Meinesz FA (1931) Une nouvelle methode pour la reduction isostatique regionale del’intensite de la pesanteur. Bull Geod 29:33–51

    Article  Google Scholar 

  • Watts AB (2001) Isostasy and flexure of the lithosphere. Cambridge University Press, Cambridge

    Google Scholar 

  • Yi W, Rummel R, Gruber T (2013) Gravity field contribution analysis of GOCE gravitational gradient components. Stud Geophys Geod 57(2):174–202

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by projects Nos. 76/10:1 and 116/12 of the Swedish National Space Board (SNSB). Dr. Ole Baltazar Andersen from The National Space Institute of Denmark (DTU SPACE) is acknowledged for his help and discussion about the global marine gravity field model.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Abrehdary.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abrehdary, M., Sjöberg, L.E. & Bagherbandi, M. Modelling Moho depth in ocean areas based on satellite altimetry using Vening Meinesz–Moritz’ method. Acta Geod Geophys 51, 137–149 (2016). https://doi.org/10.1007/s40328-015-0116-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40328-015-0116-6

Keywords

Navigation