We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Image-based approach for satellite visibility analysis in critical environments

volume 51pages113123(2016)


The global navigation satellite system (GNSS) positioning solution relies greatly on the satellite configuration visible at a specific receiver location. As a consequence, satellite visibility analysis considering the surrounding terrain obstruction, becomes a key step when the GNSS positioning quality is to be evaluated. Current satellite visibility analysis requires high-resolution digital surface model (DSM) data and is thus a pricey and time-consuming task. In this study, an image-based approach for the satellite visibility analysis is proposed. Terrain obstructions are first identified from photo images, using image-processing techniques. The maximal obstruction angle at each direction is then determined, based on photogrammetric principles. According to the results from a case study, this novel approach provides a satellite visibility analysis solution comparable to that of the current DSM approaches, but with significantly improved computational efficiency. Consequently, a highly efficient and low-cost satellite visibility analysis becomes possible when the proposed approach is implemented.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. Ackermann F (1999) Airborne laser scanning: present and future expectations. ISPRS J Photogramm Remote Sens 54:64–67. doi:10.1016/S0924-2716(99)00009-X

    Article  Google Scholar 

  2. Ackermann S, Angrisano A, Del Pizzo S, Gaglione S, Gioia C, Troisi S (2014) Digital surface models for GNSS mission planning in critical environments. J Surv Eng. doi:10.1061/(ASCE)SU.1943-5428.0000119

    Google Scholar 

  3. Canny J (1986) A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell 8(6):679–698. doi:10.1109/TPAMI.1986.4767851

    Article  Google Scholar 

  4. Chiang KW, Peng WC, Yeh YH, Chen KH (2009) Study of alternative GPS network meteorological sensors in Taiwan: case studies of the plum rains and typhoon Sinlaku. Sensors 9(6):5001–5021. doi:10.3390/s90605001

    Article  Google Scholar 

  5. Han JY, Wu Y, Liu RY (2012) Determining the optimal site location of GNSS base stations. Bol Ciênc Geod 18(1):154–169. doi:10.1590/S1982-21702012000100009

    Google Scholar 

  6. Han JY, Guo J, Chuang JY (2014) Efficient obstruction analysis for the GNSS relative positioning of a terrestrial mobile mapping system. Surv Rev. doi:10.1179/1752270614Y.0000000110

    Google Scholar 

  7. Hobi ML, Ginzler C (2012) Accuracy assessment of digital surface models based on WorldView-2 and ADS80 stereo remote sensing data. Sensors 12:6347–6368. doi:10.3390/s120506347

    Article  Google Scholar 

  8. Hofmann-Wellenhof B, Lichtenegger H, Collins J (2011) GPS theory and practice, 5th edn. Springer, New York

    Google Scholar 

  9. Hogan MK, Santos MC (2005) Advanced mission planning tool for real-time kinematic (RTK) GPS surveying. In: Proceeding of Institute of Navigation National Technical Meeting, San Diego, 24–26 Jan 2005

  10. Kleijer F, Odijk D, Verbree E (2009) Prediction of GNSS availability and accuracy in urban environments—case study Schiphol Airport. Lecture notes in geoinformation and cartography, Springer, New York, pp 387–406. doi: 10.1007/978-3-540-87393-8_23

  11. Kobler A, Pfeifer N, Ogrinc P, Todorovski L, Oštir K, Džeroski S (2007) Repetitive interpolation: a robust algorithm for DTM generation from Aerial Laser Scanner Data in forested terrain. Remote Sens Environ 108(1):9–23. doi:10.1016/j.rse.2006.10.013

    Article  Google Scholar 

  12. Leick A (2004) GPS satellite surveying, 3rd edn. Wiley, New York

    Google Scholar 

  13. Li J, Taylor G, Kidner D, Ware M (2006) Prediction of GPS multipath effect using LiDAR digital surface models and building footprints. Lect Notes Comput Sci 4295:42–53. doi:10.1007/11935148_5

    Article  Google Scholar 

  14. Mikhail EM, Bethel JS, McGlone JC (2001) Introduction to modern photogrammetry. Wiley, New York

    Google Scholar 

  15. Misra P, Enge P (2011) Global positioning system: signals, measurements, and performance. Ganga-Jamuna Press, Lincoln

    Google Scholar 

  16. Nurminen K, Karjalainen M, Yu X, Hyyppä J, Honkavaara E (2013) Performance of dense digital surface models based on image matching in the estimation of plot-level forest variables. ISPRS J Photogramm Remote Sens 83:104–115. doi:10.1016/j.isprsjprs.2013.06.005

    Article  Google Scholar 

  17. Strang G, Borre K (1997) Linear algebra, geodesy, and GPS. Wellesley-Cambridge Press, Wellesley

    Google Scholar 

  18. Taylor G, Li J, Kidner D, Ware M (2005) Surface modeling for GPS satellite visibility. Lect Notes Comput Sci 3833:281–295. doi:10.1007/11599289_24

    Article  Google Scholar 

  19. Zhang K, Liu GJ, Wu F, Densley L, Retscher G (2008) An investigation of the signal performance of the current and future GNSS in typical urban canyons in Australia using a high fidelity 3D urban model. Lecture notes in geoinformation and cartography, Springer, New York, pp 407–420. doi: 10.1007/978-3-540-87393-8_24

Download references


The authors thank the anonymous reviewers for their constructive comments which significantly improved the quality of the original manuscript. The funding support from the Ministry of Science and Technology in Taiwan (under contract No. 103-2221-E-002-128-MY2) is gratefully acknowledged.

Author information



Corresponding author

Correspondence to Jen-Yu Han.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Han, J., Juan, T. Image-based approach for satellite visibility analysis in critical environments. Acta Geod Geophys 51, 113–123 (2016). https://doi.org/10.1007/s40328-015-0114-8

Download citation


  • Satellite visibility analysis
  • Global navigation satellite system (GNSS)
  • Dilution of precision (DOP)
  • Image classification
  • Photogrammetric analysis
  • Sky plot