Skip to main content

Development and analysis of 3D ionosphere modeling using base functions and GPS data over Iran

Abstract

In this study, a 3D-model of the electron density has been performed using the global positing system (GPS) measurements over Iran. 2D spherical harmonic functions and empirical orthogonal functions are used as base functions to model the horizontal and the vertical content of the electron density, respectively. The ionosonde data in Tehran (φ = 35.7382°, λ = 51.3851°) has been used for choosing an optimum value for the regularization parameter. To apply the method for constructing a 3D-image of the electron density, GPS measurements of the Iranian permanent GPS network (at 3-day in 2007) have been used. The instability of solution has been numerically analyzed and the Tikhonov method has been used for regularizing the solution. To come up with an optimum regularization parameter, the relative error in electron density profile computed from ionosonde measurements and their 3D model are minimized. The modeling region is between 24° to 40°N and 44° to 64°W. The result of 3D-Model has been compared to that of the international reference ionosphere model 2012 (IRI-2012). The data analysis shows that the latitudinal section of ionosphere electron density from 3D technique supports the expected time and height variations in ionosphere electron density. Moreover, these findings show that the height of maximum electron density is changed during the day and night and confirms the efficiency of multi-layer models in comparison to single-layer models. This method could recover 64–99 % of the ionosphere electron density.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  • Amerian Y, Mashhadi Hossainali M, Voosoghi B, Ghaffari MR (2010) Tomographic reconstruction of the ionospheric electron density in term of wavelets. J Aerosp Sci Technol 7(1):19–29

    Google Scholar 

  • Andreeva ES, Galinov AV, Kunitsyn VE, Mel’nichenko YA, Tereshchenko ED, Filimonov MA, Chernykov SM (1990) Radiotomographic reconstructions of ionization dip in the plasma near the Earth. J Exp Theor Phys Lett 52:145–148

    Google Scholar 

  • Aster RC, Borchers B, Thurber C (2003) Parameter estimation and inverse problems. Elsevier Academic Press, New York

    Google Scholar 

  • Austen JR, Franke SJ, Liu CH (1988) Ionospheric imaging using computerized tomography. Radio Sci 23(3):299–307

    Article  Google Scholar 

  • Bilitza D, Reinisch BW (2008) International reference ionosphere 2007: improvements and new parameters. Adv Space Res 42(4):599–609. doi:10.1016/j.asr.2007.07.048

    Article  Google Scholar 

  • Bjornsson H, Venegas SA (1997) A manual for EOF and SVD analyses of climate data. Department of Atmospheric and Oceanic Sciences and Center for Climate and Global Change Research, McGill University, February, 1997, 53

  • Ciraolo L, Azpilicueta F, Brunini C, Meza A, Radicella SM (2007) Calibration errors on experimental slant total electron content (TEC) determined with GPS. J Geod 81(2):111–120. doi:10.1007/s00190-006-0093-1

    Article  Google Scholar 

  • Colombo O.L, Hernandez-Pajares M, Juan J.M, Snaz J, Talaya J (1999), Resolving carrier-phase ambiguities on the fly, at more than 100 km from nearest reference site, with the help of ionospheric tomography. In: Proceeding of ION GPS-99, Nashville, Sep 1999, pp. 1635–1642

  • Coster AJ, Foster J, Erickson P (2003) Monitoring the Ionosphere with GPS. Space Weather GPS World 14(5):42–49

    Google Scholar 

  • El-Arini MB, O’Donnell PA, Kellam P, Klobuchar JA, Wisser TC, Doherty PH (1993) The FAA wide area differential GPS (WADGPS) static ionosphere experiment. In: Proceeding of the institute of navigation NTM-93, San Francisco, CA, Jan 1993

  • El-Arini MB, Hegarty CJ, Fernow JP, Klobuchar JA (1994) Development of an error budget for a GPS wide-area augmentation system (WAAS). In: Proceeding of the institute of navigation NTM-94, San Diego, CA, Jan 1994

  • El-Arini MB, Conker RS, Albertson TW, Reagan JK, Klobuchar JA, Doherty PH (1995) Comparison of real-time ionosphere algorithms for a gps wide-area augmentation system (WAAS). J Inst Navig 41(4):393–413 winter 1994–1995

  • Foster JC, Buonsanto MJ, Klobuchar JA, Holt JM, Fougere P, Pakula WA, Raymund TD, Kunitsyn VE, Andreeva ES, Tereschenko ED, Kudukon BZ (1994) Russian American tomography experiment. Int J Imag Syst Technol 5:148–159

    Article  Google Scholar 

  • Gao Y, Heroux P, Kouba J (1994) Estimation of GPS receiver and satellite L1/L2 signal delay biases using data from CACS. In: Processing of KIS-94, Banff, Aug 30–Sep 2 1994

  • Hansen PC (1987) The truncated SVD as a method for regularization. BIT 27:534–553

    Article  Google Scholar 

  • Hansen AJ, Walter T, Enge P (1997), Ionospheric correction using tomography. In: Proceeding of 10th international technical meeting of the satellite division of the institute of navigation, ION GPS-97, Sep 16–19

  • Hernández-Pajares M, Juan JM, Sanz J (1999) New approaches in global ionospheric determination using ground GPS data. J Atmos Sol Terr Phys 61(16):1237–1247. doi:10.1016/S1364-6826(99)00054-1

    Article  Google Scholar 

  • Hernández-Pajares M, Juan JM, Sanz J, Orus R, García-Rigo A, Feltens J, Komjathy A, Schaer SC, Krankowski A (2009) The IGS VTEC maps: a reliable source of ionospheric information since 1998. J Geod 83(3–4):263–275. doi:10.1007/s00190-008-0266-1

    Article  Google Scholar 

  • Howe BM, Runsiman K, Secan JA (1998) Tomography of ionosphere: four dimensional simulations. Radio Sci 33(1):109–128

    Article  Google Scholar 

  • Jackson JE (2003) A users’ guide to principal components. Wiley, Hoboken

    Google Scholar 

  • Jain MK, Iyengar SRK, Jain RK (2003) Numerical methods for scientific and engineering computation. New Age International (P) Limited, Publishers, New Delhi

    Google Scholar 

  • Johnson RA, Wichern DW (2002) Applied multivariate statistical analysis. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Komjathy A (1997) Global ionospheric total electron content mapping using the global positioning system. PhD dissertation, Department of Geodesy and Geomatics Engineering, Technical Report No. 188, University of New Brunswick, p 248

  • Liao X (2000) Carrier phase based ionosphere recovery over a regional are GPS network. UCGE reports, number 20143, The University of Calgary, Calgary

  • Liao X, Gao Y (2001) High-precision ionosphere TEC recovery using a regional-area GPS network. Navigation 48(2):101–111

    Article  Google Scholar 

  • Liu ZZ (2004) Ionosphere tomographic modeling and applications using global positioning system (GPS) measurments. UCGE reports, number 20198, University of CALGARY, Jun 2004

  • Liu ZZ, Gao Y (2001a) Ionospheric tomography using GPS measurements. In: Proceeding of the international symposium on kinematic systems in geodesy, geomatics and navigation, Banff, 5–8 Jun 2001, pp 111–120

  • Liu ZZ, Gao Y (2001b) Optimization of parameterization in ionospheric tomography. In: Proceeding of institute of navigation GPS 2001, Salt Lake City, Utha, 11–14 Sep 2001, pp 2277–2285

  • Mashhadi Hossainali M (2006) A comprehensive approach to the analysis of the 3D kinematics of deformation. Institute of Physical Geodesy. PhD Thesis, Darmstadt University of Technology, Darmstadt, p 152

  • Mitchell CN, Kersley L, Heaton JAT, Pryse SE (1997) Determination of the vertical electron-density profile in ionospheric tomography: experimental results. Ann Geophys 15:747–752

    Article  Google Scholar 

  • Nohutcu M, Karslioglu MO, Schmidt M (2010) B-spline modeling of VTEC over Turkey using GPS observations. J Atmos Sol Terr Phys 72(7–8):617–624. doi:10.1016/j.jastp.2010.02.022

    Article  Google Scholar 

  • Raymund TD, Pryse SE, Kersley L, Heaton JAT (1993) Tomographic reconstruction of ionospheric electron density with European incoherent scatter radar verification methods. Radio Sci 28:811–818

    Article  Google Scholar 

  • Schaer S (1999), Mapping and predicting the earth’s ionosphere using the global positioning system. PhD Dissertation, Astronomical Institute, University of Berne, p 205

  • Seeber G (1993) Satellite geodesy: foundations, methods and application. Walter de Gruyter, Berlin and New York, p 531

    Google Scholar 

  • Skone S (1998) Wide area ionosphere grid modeling in the auroral region. UCGE reports number 20123, PhD Thesis, The University of Calgary, Calgary

  • Strangeways HJ, Kutiev I, Cander LR et al (2009) Near-earth space plasma modelling and forecasting. Ann Geophys 52(3–4):255–271

    Google Scholar 

  • Walker JK (1989) Spherical cap harmonic modeling of high latitude magnetic activity and equivalent sources with sparse observations. J Atmos Terr Phys 51(2):67–80

    Article  Google Scholar 

  • Yin P, Mitchell CN, Spencer PSJ, Foster JC (2004) Ionospheric electron concentration imaging using GPS over the USA during the storm of July 2000. Geophys Res Lett 31:L12806

    Google Scholar 

  • Yizengaw E, Moldwin MB, Dyson PL, Essex EA (2007) Using tomography of GPS TEC to routinely determine ionospheric average electron density profiles. J Atmos Solar Terr Phys 69:314–321

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mir-Reza Ghaffari Razin.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Razin, MR.G. Development and analysis of 3D ionosphere modeling using base functions and GPS data over Iran. Acta Geod Geophys 51, 95–111 (2016). https://doi.org/10.1007/s40328-015-0113-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40328-015-0113-9

Keywords

  • Ionosphere modeling
  • Total electron contents
  • Ionosonde
  • Regularization
  • GPS
  • IRI 2012