Skip to main content

Rock physics modeling to assess the impact of spatial distribution pattern of pore fluid and clay contents on acoustic signatures of partially-saturated reservoirs

Abstract

The identification of pore fluid type, saturation and distribution pattern within the pore space is of great significance as several seismic and petrophysical properties of porous rocks vary largely by fluid type, saturation and fluid distribution pattern. With the help of rock physics modeling, the impact of fluid saturation as well as fluid distribution pattern on seismic velocities, acoustic impedances and seismic amplitudes is estimated on porous rock of early Cretaceous Mississauga sands. For this purpose two saturation patterns: uniform and patchy saturations are considered within the pore spaces. The primary goal of this study is to understand the vertical and horizontal trends of numerous seismic parameters such as P-wave velocity (V P ), S-wave velocity (V S ), their impedances, V P /V S ratio, bulk density (ρ b ), seismic reflectivity etc. as a function of fluid saturation, saturation pattern (patchy or homogeneous), porosity (ϕ) and clay content. The results reveal that the seismic parameters and offset dependent amplitudes are very sensitive to pore fluid saturation and distribution patterns and physical properties. As the hydrocarbons (oil/gas) saturation increases, the compressional wave velocity decreases. P-wave velocity is 20–40 % higher in case of patchy saturation than of homogeneous saturation. Similarly, reservoir porosity and clay matrix control the elastic response of porous rock due to which seismic velocities decrease with increase in porosity and clay content.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Ahmed N (2013) Rock physics modeling and sensitivity analysis of AVO derived indicators to discriminate fluids and lithologies of Penobscot area, Nova Scotia, Canada. Dissertation, University of the Punjab

  • Ahmed N, Khalid P, Ghazi S, Anwar AW (2014) AVO forward modeling and attributes analysis for fluid’s identification: a case study. Acta Geod Geophys. doi:10.1007/s40328-014-0097-x

    Google Scholar 

  • Batzle ML, Wang Z (1992) Seismic properties of pore fluids. Geophysics 57:1396–1408

    Article  Google Scholar 

  • Berryman JG, Berge PA, Bonner BP (2002) Estimating rock porosity and fluid saturation using only seismic velocities. Geophysics 67:39–404

    Article  Google Scholar 

  • Dvorkin J, Nur A (1998) Time average equation revisited. Geophysics 63:460–464

    Article  Google Scholar 

  • Dvorkin J, Moos D, Packwood JL, Nur AM (1999) Identifying patchy saturation from well logs. Geophysics 64:1756–1759

    Article  Google Scholar 

  • Gassmann F (1951) Uber die Elastizitat poroser Medien. Vierteljahrsschr Natforsch Ges Zür 96:1–23

    Google Scholar 

  • Hill R (1952) The elastic behavior of a crystalline aggregate. Proc Phys Soc Lond Ser A 65:349–354

    Article  Google Scholar 

  • Hill R (1963) Elastic properties of reinforced solids: some theoretical principles. J Mech Phys Solids 11:357–372

    Article  Google Scholar 

  • Khalid P, Ghazi S (2013) Discrimination of fizz water and gas reservoir by AVO analysis: a modified approach. Acta Geod Geophys 48:347–361

    Article  Google Scholar 

  • Khalid P, Brosta D, Nichita DV, Blanco J (2014a) A modified rock physics model for analysis of seismic signatures of low gas-saturated rocks. Arab J Geosci 7:3281–3295

    Article  Google Scholar 

  • Khalid P, Ahmed N, Khan KA, Naeem M (2014b) AVO-derived attributes to differentiate reservoir facies from non-reservoirs facies and fluid discrimination in Penobscot area. Geoscience J. doi:10.1007/s12303-014-0048-0

    Google Scholar 

  • Khan KA, Akhter G, Ahmad Z (2010) OIL—output input language for data connectivity between geoscientific software applications. Comput Geosci 36:687–697. doi:10.1016/j.cageo.2009.09.005

    Article  Google Scholar 

  • Knight R, Dvorkin J, Nur A (1998) Acoustic signatures of partial saturation. Geophysics 63:132–138

    Article  Google Scholar 

  • Korneev V, Glubokovskikh S (2013) Seismic velocity changes caused by an overburden stress. Geophysics 78:WC25–WC31

    Article  Google Scholar 

  • Kuster GT, Toksoz MN (1974) Velocity and attenuation of seismic waves in two-phase media—part I: theoretical formulations. Geophysics 39:587–606

    Article  Google Scholar 

  • Mavko G, Mukerji T (1998) Bounds on low-frequency seismic velocities in partially saturated rocks. Geophysics 63:918–924

    Article  Google Scholar 

  • Mavko G, Mukerji T, Dvorkin J (2009) The rock physics handbook. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Murphy W, Reischer A, Hsu K (1993) Modulus decomposition of compressional and shear velocities in sand bodies. Geophysics 58:227–239

    Article  Google Scholar 

  • Reuss A (1929) Berechnung der fliessgrense von mischkristallen auf grund der plastizitatbedingung fur einkristalle. Zeitschrift furAnge-wandte Mathematik aus Mechnik 9:49–58

    Article  Google Scholar 

  • Sayers CM (2006) An introduction to velocity-based pore-pressure estimation. Lead Edge 25:1496–1500

    Article  Google Scholar 

  • Tatham RH (1982) V P /V S and lithology. Geophysics 47:336–344

    Article  Google Scholar 

  • Toms J, Müller TM, Gurevich B (2007) Seismic attenuation in porous rocks with random patchy saturation. Geophys Prospect 55:671–678

    Article  Google Scholar 

  • Voigt W (1910) Lehrbuch der Kristallphysik. Teubner, Leipzig

    Google Scholar 

  • Wang Z (2000) The Gassmann equation revisited: comparing laboratory data with Gassmann’s predictions. In: Wang Z, Nur A (eds) Seismic and acoustic velocities in reservoir rocks, 3: recent developments. Soc Expl Geophys, pp. 8–23

  • Wood AB (1941) A textbook of sound. G. Bell and sons, London

    Google Scholar 

  • Zhu X, McMechan GA (1990) Direct estimation of the bulk modulus of the frame in fluid saturated elastic medium by biot theory. In: 60th annual international meeting, SEG expanded abstracts, pp 787–790

  • Zinszner B, Pellerin FM (2007) A geoscientist’s guide to petrophysics. Technip, Paris

    Google Scholar 

  • Zoeppritz K (1919) Erdbebenwellen VIIIB, on the reflection and propagation of seismic waves. Göttinger Nachrichten 1:66–84

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Perveiz Khalid.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ahmed, N., Khalid, P. & Anwar, A.W. Rock physics modeling to assess the impact of spatial distribution pattern of pore fluid and clay contents on acoustic signatures of partially-saturated reservoirs. Acta Geod Geophys 51, 1–13 (2016). https://doi.org/10.1007/s40328-015-0101-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40328-015-0101-0

Keywords

  • Rock physics
  • Fluid substitution
  • Homogeneous and patchy saturation
  • Fluid phases
  • Angle dependent reflectivity