Skip to main content
Log in

A study on the Fennoscandian post-glacial rebound as observed by present-day uplift rates and gravity field model GOCO02S

  • Published:
Acta Geodaetica et Geophysica Aims and scope Submit manuscript

Abstract

Repeated absolute gravity measurements in Fennoscandia have revealed that the on-going post-glacial rebound can be regarded as a pure viscous flow of mantle mass of density 3390 kg/m3 towards the central part of the region caused by a gravity/uplift rate of −0.167 μGal/mm. Our model estimates the rebound induced rates of changes of surface gravity and geoid height to have peaks of −1.9 μGal/yr and 1.6 mm/yr, respectively, the former being consistent with absolute gravity observations. The correlation coefficient of the spherical harmonic representations of the geoid height and uplift rate for the spectral windows between degrees 10 and 70 is estimated to −0.99±0.006, and the maximum remaining land uplift is estimated to the order of 80 m. Both the (almost) linear increase of relaxation time with degree and the linear relation between geoid height and uplift rate support a model with mass flow in the major part of the mantle and disqualify the model with a flow in a thin channel below the crust. The mean viscosity of the flow in the central uplift region is estimated to 4×1021 Pa s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ågren J, Svensson R (2007) Postglacial land uplift model and system definition for the new Swedish height system RH 2000. Reports in Geodesy and Geographical Information Systems, LMV-Rapport 2007:4. Lantmateriet, Gävle, Sweden

  • Ågren J, Svensson R (2011) The height system RH 2000 and the land uplift model NKG2005LU. Mapp Image Sci 2011(3):4–12

    Google Scholar 

  • Balling N (1979) The land uplift in Fennoscandia, gravity field anomalies and isostasy. In: Morner (ed) Earth rheology, isostasy and eustasy. Wiley, New York

    Google Scholar 

  • Bergstrand S, Scherneck H-G, Milne GA, Johansson JM (2005) Upper mantle viscosity from continuous GPS baselines in Fennoscandia. J Geodyn 39:91–109. doi:10.1016/j.jog.2004.08.004

    Article  Google Scholar 

  • Bjerhammar A, Stocki S, Svensson L (1980) A geodetic determination of viscosity. The Royal Institute of Technology, Stockholm

    Google Scholar 

  • Cathles LM (1971) The viscosity of the Earth’s mantle. PhD thesis, Princeton University

  • Cathles LM (1975) The viscosity of the Earth’s mantle. Princeton University Press, Princeton

    Google Scholar 

  • De Geer G (1888) Om Skandinaviens nivåförändringar under Quartärperioden. Geol Fören Stockh Förh 10:366–379

    Article  Google Scholar 

  • De Geer G (1890) Om Skandinaviens nivåförändringar under Quartärperioden. Geol Fören Stockh Förh 12:61–110

    Article  Google Scholar 

  • Ekman M, Mäkinen J (1996) Recent postglacial rebound, gravity change and mantle flow in Fennoscandia. Geophys J Int 126(1):229–234. doi:10.1111/j.1365-246X.1996.tb05281.x

    Article  Google Scholar 

  • Ekman M, Mäkinen J, Midsundstad Å, Remmer O (1987) Gravity change and land uplift in Fennoscandia. Bull Geod 61:60–64

    Article  Google Scholar 

  • Fjeldskaar W, Cathles L (1991) The present rate of uplift of Fennoscandia implies a low-viscosity asthenosphere. Terra Nova 3:393–400

    Article  Google Scholar 

  • Gitlein O (2010) Absolutgravimetrische Bestimmung der Fennoscandischen Landhebung mit dem FG5-220. German Geodetic Commission, No 643, Series C (Dissertations)

  • Goiginger H, Rieser D, Mayer-Guerr T, Pail R, Schuh W-D, Jäggi A, Maier A (2011) GOCO, consortium: the combined satellite-only global gravity field model GOCO02S. European Geosciences Union General Assembly, Wien, 04.04.2011

  • Haskell NA (1935) The motion of a viscous fluid under a surface load. Physics 6:265–269

    Article  Google Scholar 

  • Kaufmann G, Lambeck K (2000) Mantle dynamics, postglacial rebound and the radial viscosity profile. Phys Earth Planet Inter 121:301–324

    Article  Google Scholar 

  • Lambeck K, Smither C, Ekman M (1998) Test of glacial rebound models for Fennoscandia based on instrumented sea- and lake-level records. Geophys J Int 135:375–387

    Article  Google Scholar 

  • Lidberg M, Johansson JM, Scherneck H-G, Milne GA (2010) Recent results based on continuous GPS observations of the GIA process in Fennoscandia from BIFROST. J Geodyn 50:8–18. doi:10.1016/j.jog.2009.11.010

    Article  Google Scholar 

  • Lliboutry LA (1971) Rheological properties of the asthenosphere from Fennoscandian data. J Geophys Res 76:1433–1446

    Article  Google Scholar 

  • McConnell RK (1965) Isostatic adjustment in a layered earth. J Geophys Res 70:5171

    Article  Google Scholar 

  • McConnell RK (1968) Viscosity of the mantle from relaxation time spectra of isostatic adjustment. J Geophys Res 73(22):7089–7105. doi:10.1029/JB073i022p07089

    Article  Google Scholar 

  • Milne GA, Davis JL, Mitrivica JX, Scherneck H-G, Johansson JM, Vermeer M, Koivula H (2001) Space geodetic constraints on glacial isostatic adjustement in Fennoscandia. Science 291:2381–2385

    Article  Google Scholar 

  • Moritz H (1980) Advanced physical geodesy. Wichmann, Karlsruhe

    Google Scholar 

  • Niskanen E (1949) On the elastic resistance of the earth’s crust. Ann Acad Sci Fenn, AIII 21:1–23

    Google Scholar 

  • Olsson P-A, Ågren J, Scherneck H-G (2012) Modelling of the GIA-induced surface gravity change over Fennoscanida. J Geodyn 61:12–22

    Article  Google Scholar 

  • Peltier WR (1974) The impulse response of a Maxwell Earth. Rev Geophys Space Phys 12:649–669

    Article  Google Scholar 

  • Sauramo M (1958) Die Geschichte der Ostsee. Ann Acad Sci Fenn, AIII 51:1–522

    Google Scholar 

  • Sjöberg LE (1983) Land uplift and its implications on the geoid in Fennoscandia. Tectonophysics 97:97–101

    Article  Google Scholar 

  • Sjöberg LE (1989) The secular change of gravity and geoid in Fennoscandia. In: Gregersen S, Basham RW (eds) Earthquakes at North-Atlantic passive mragins: neotechtonics and postglacial rebound. NATO ASI series C: mathematical and physical sciences, vol 266. Kluwer Academic, Dordrecht

    Google Scholar 

  • Sjöberg LE (1990) A refined adjustement model for the secular change of gravity on the Fennoscanidian 63° latitude gravity line. In: Vysckocil P, Reigber C, Cross PA (eds) Global and regional geodynamics. IAG symposia, vol 101. Springer, Berlin, pp 337–348

    Chapter  Google Scholar 

  • Sjöberg LE, Nord T, Fan H (1991) The Fennoscandian geoid bulge and its correlation with land uplift and Moho depth. In: Schultz BE, Anderson A, Froidevaux G, Park M (eds) Gravimetry and space techniques applied to geodynamics and ocean dynamics. AGU geophysical monograph series, vol 82, pp 133–142

    Chapter  Google Scholar 

  • Sjöberg LE, Nord T, Fan H (1994) Further studies on the Fennoscandian gravity field versus Moho depth and land uplift. Bull Geod 69:32–42

    Article  Google Scholar 

  • Steffen H, Wu P, Wang HS (2010) Determination of the Earth’s structure in Fennoscandia from GRACE and implications on the optimal post-processing of GRACE data. Geophys J Int 182(3):1295–1310. doi:10.1111/j.1365-246X.2010.04718.x

    Article  Google Scholar 

  • Steffen H, Wu P (2011) Glacial isostatic adjustment in Fennoscandia—a review of data and modeling. J Geodyn 52(3–4):169–204. doi:10.1016/j.jog.2011.03.002

    Article  Google Scholar 

  • Van Bemmelen RW, Berlage HP (1935) Versuch einer mathematischen Behandlung geotektonischer Bewegung unter besonderer Berucksichterung der Undationstheorie. Gerlands Beitr Geophys 43:19–55

    Google Scholar 

  • Van der Wal W, Kurtenbach E, Kusche J, Vermeersen B (2011) Radial and tangential gravity rates from GRACE in areas of glacial isostatic adjustment. Geophys J Int 187(2):797–812. doi:10.1111/j.1365-246X.2011.05206.x

    Article  Google Scholar 

  • Wahr JM, Davis JL (2002) Geodetic constraints on glacial isostatic adjustment. In: Mitrovica JX, Vermeersen BLA (eds) Ice sheets, sea level and the dynamic earth. Geodynamics series, vol 29. AGU, Washington, pp 3–32. doi:10.1029/GD029p0003

    Chapter  Google Scholar 

  • Walcott RI (1980) Rheological models and observational data of glacio-isostatic rebound. In: Mörner N-A (ed) Earth rheology, isostasy and eustasy. Wiley, Chichester

    Google Scholar 

  • Watts AB (2001) Isostasy and flexure of the lithosphere. Cambridge University Press, Cambridge

    Google Scholar 

  • Zhao S, Lambeck K, Lidberg M (2012) Lithosphere thickness and mantle viscosity inverted from GPS-derived deformation rates in Fennoscandia. Geophys J Int 190:278–292.

    Article  Google Scholar 

Download references

Acknowledgements

Dr. Jonas Ågren from The National Land Survey of Sweden (Lantmäteriet) is acknowledged for discussions and for preparing the land uplift data over Fennoscandia, which was used in this work. Also, Dr. G. Papp is cordially acknowledged for providing us with several valuable remarks that we considered for the final version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars E. Sjöberg.

Appendix

Appendix

Let us assume that the elastic deformation of the crust of thickness D and density ρ c is negligible in the vertical direction. Then the disturbing potential T total at sea-level caused by the glacial depression of the crust is composed of the sum of the potential contributions from the deformations of the upper and lower surfaces (T up and T low ) by their depression d:

$$ T_{total} = - G\rho_{c}\iint_{\sigma} \int _{R - d}^{R} \frac {r^{2}dr}{l} d\sigma- G\Delta\rho \iint_{\sigma} \int_{R - D - d}^{R - D} \frac{r^{2}dr}{l} d\sigma= T_{up} + T_{low}. $$
(A.1)

Here G is the gravitational constant Δρ is the difference between the mantle minus crust density contrast, σ is the unit sphere, R is sea-level radius, D is crustal thickness, l is the distance between computational point and integration point. The first integral is the effect on the Earth’s potential due to the mass deficit between sea-level and the depressed crust. The second term is the effect due to the depressed bottom of the crust into the mantle. Expanding the inverse distance in an exterior type of Legendre series, one obtains for the two potential contributions:

$$\begin{aligned} T_{up} =& - G\rho_{c}\sum_{n = 0}^{\infty} \iint _{\sigma} \int_{R - d}^{R} \frac{r^{n + 2}}{R^{n + 1}}dr P_{n} ( \cos\psi )d\sigma \\ =& - G\rho _{c}R^{2}\sum_{n = 0}^{\infty} \frac{1}{n + 3}\iint_{\sigma} \biggl[ 1 - \biggl( 1 - \frac{d}{R} \biggr)^{n + 3} \biggr]P_{n} ( \cos\psi )d\sigma \\ \approx&- G\rho_{c}4\pi R\sum_{n = 0}^{\infty} \frac{d_{n}}{2n + 1} = - 4\pi G\rho_{c}R\sum_{n = 0}^{\infty} \frac{1}{2n + 1} \sum_{m = - n}^{n} d_{nm}Y_{nm}, \end{aligned}$$
(A.2)

and

$$\begin{aligned} T_{low} =& - G\Delta\rho\sum_{n = 0}^{\infty} \iint _{\sigma} \int_{R - D - d}^{R - D} \frac{r^{n + 2}}{R^{n + 1}}dr P_{n} ( \cos\psi )d\sigma= \\ =&- G\Delta\rho R^{2}\sum_{n = 0}^{\infty} \frac{1}{n + 3}\iint_{\sigma} \biggl[ \biggl( 1 - \frac{D}{R} \biggr)^{n + 3} - \biggl( 1 - \frac{D - d}{R} \biggr)^{n + 3} \biggr]P_{n} ( \cos\psi )d\sigma \\ \approx&- 4\pi G\Delta\rho R\sum_{n = 0}^{\infty} \frac{d_{n}}{2n + 1} = - 4\pi G\Delta\rho R\sum_{n = 0}^{\infty} \frac{1}{2n + 1} \sum_{m = - n}^{n} d_{nm}Y_{nm}. \end{aligned}$$
(A.3)

Summing up, one obtains the total disturbing potential at sea-level:

$$ T_{total} \approx- G\rho_{m}R\sum_{n = 0}^{\infty} \iint_{\sigma} dP_{n} ( \cos\psi )d\sigma= - 4\pi G \rho_{m}R\sum_{n = 0}^{\infty} \frac{1}{2n + 1} \sum_{m = - n}^{n} d_{nm}Y_{nm}. $$
(A.4)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sjöberg, L.E., Bagherbandi, M. A study on the Fennoscandian post-glacial rebound as observed by present-day uplift rates and gravity field model GOCO02S. Acta Geod Geophys 48, 317–331 (2013). https://doi.org/10.1007/s40328-013-0025-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40328-013-0025-5

Keywords

Navigation