Skip to main content
Log in

Damages indicators for post-earthquake condition assessment

  • Published:
Acta Geodaetica et Geophysica Aims and scope Submit manuscript

Abstract

After an earthquake, the condition of industrial systems, structures and equipment, especially at nuclear power plants has to be assessed since this information is needed for accident management and for the decision on the continuation of the operation. The damaging potential of the earthquake can be characterized by maximum horizontal acceleration of the ground motion, response spectra, cumulative absolute velocity and different instrumental intensity values. These quantities can be correlated with the earthquake characteristics, magnitude, distance, etc. Some of the indices are selective to damage mechanism and can be correlated to load-bearing features of the structures. Different indicators of damaging potential of earthquakes are analyzed in the paper from the point of view of applicability for post-event condition assessment at nuclear power plants and for using as criteria for restart of the operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • ASME (2010) ASME boiler and pressure vessel code (BPVC), Section III: Rules for construction of nuclear power plant components, Division 1, Subsection NB: Class 1 components. American Society of Mechanical Engineers, 01-Jul-2010. ISBN: 9780791832370

  • ASME/ANS RA-S-2008 (2008) Standard for level 1/large early release frequency probabilistic risk assessment for nuclear power plant applications

  • Budnitz RJ et al (1985) An approach to the quantification of seismic margins in nuclear power plants. Lawrence Livermore National Laboratory, NUREG/CR-4334

  • Cabanas L, Benito B, Herraiz M (1997) An approach to the measurement of the potential structural damage of earthquake ground motions. Earthq Eng Struct Dyn 26:79Đ92

    Google Scholar 

  • EPRI (1988a) A methodology for assessment of nuclear power plant seismic margin. Electric Power Research Institute, NP-6041

  • EPRI (1988b) Criterion for determining accidence of the operating basis earthquake. EPRI NP-5930, July

  • EPRI (1991) Standardization of the cumulative absolute velocity. Report No EPRI TR-100082-T2, EPRI, Palo Alto, California

  • Goldberg BE et al (1994) System engineering “Toolbox” for design-oriented engineers. NASA reference publication 1358, December

  • Hancock J, Bommer JJ (2004) Predicting the number of cycles of ground motion. In: 13th world conference on earthquake engineering, Vancouver, B.C., Canada, 1–6 August 2004, Paper No 1989

    Google Scholar 

  • Hancock J, Bommer JJ (2005) Predicting the number of cycles of ground motion. Earthq Eng Struct Dyn 2005(34):637–664

    Article  Google Scholar 

  • Heacock DA (2011) North Anna power station restart readiness. Public meeting 1st November 2011. http://www.nrc.gov/info-finder/reactor/na/dominion-slides-11-01-2011-meeting.pdf

  • IAEA (2011) Earthquake preparedness and response for nuclear power plants. IAEA safety reports series, vol 66. IAEA, Vienna. ISBN 978-92-0-108810-9

    Google Scholar 

  • Katona TJ (2010) Options for the treatment of uncertainty in seismic probabilistic safety assessment of nuclear power plants. Pollack Period 5:(1):121–136

    Article  Google Scholar 

  • Katona TJ (2011) Interpretation of the physical meaning of the cumulative absolute velocity. Pollack Period 6(1):9–106

    Google Scholar 

  • Katona TJ (2012, to be published) Modeling of fatigue type seismic damage for nuclear power plants. Comput Mater Sci 64:22–24

    Article  Google Scholar 

  • Kostov M (2005) Site specific estimation of cumulative absolute velocity. In: 18th international conference on structural mechanics in reactor technology (SMiRT 18), Beijing, China, 7–12 August 2005, paper SMiRT18-K03-4

    Google Scholar 

  • Kramer S, Mitchell RA (2006) Ground motion intensity measures for liquefaction hazard evaluation. Earthq Spectra 22(2):413–438

    Article  Google Scholar 

  • Kramer S, Upsally SB (2006) Instrumental intensity scales for geohazards. In: ECI conference on geohazards. http://services.bepress.com/eci/geohazards/11

    Google Scholar 

  • KTA 2201.4 (1990) Auslegung von Kernkraftwerken gegen seismische Einwirkungen. Teil 4. Anforderungen an Verfahren zum Nachweis der Erdbebensicherheit für maschinen- und elektrotechnische Anlagenteile, Fassung 6/90

  • KTA 2201.6 (1992) Auslegung von Kernkraftwerken gegen seismische Einwirkungen. Teil 6. Maßnahmen nach Erdbeben, Fassung Juni 1992

  • KTA 3201.2 (1996) Komponenten des Primärkreises von Leichtwasserreaktoren. Teil 2. Auslegung, Konstruktion und Berechnung, Fassung 6/96

  • Minagawa K, Fujita S, Kitamura S, Okamura S (2007) Fracture prediction of piping using energy balance method. In: Transactions of SMiRT 19, Toronto, August 2007, paper # K12/5

    Google Scholar 

  • Nie J, Xu J, Costantino C (2006) P-CARES: probabilistic computer analysis for rapid evaluation of structures. NUREG/CR-6922, BNL-NUREG-77338-2006

  • Nukleáris Biztonsági Szabályzatok (2012) 3. kötet, Atomerőművek tervezési követelményei, 37/2012. (III. 9.) Korm. rendelet, Magyar Közlöny. évi 28. szám 2. melléklet a 37/2012. (III. 9.) Korm. rendelethez

  • Ochiai K, Kobayashi K, Chigama A (2010) Damage indicating parameters and damage modes of mechanical components. In: 1st Kashiwazaki international symposium on seismic safety of nuclear installations and embedded topical meetings, November

    Google Scholar 

  • Panza GF, Cazzaro R, Vaccari F (1997) Correlation between macroseismic intensities and seismic ground motion parameters. Ann Geofis XL(5):1371–1382

    Google Scholar 

  • PNAE G-7-002-86 (1989) Нормы расчета на прочност оборудования и трубопроводов атомных энергетических установок, ПНАЭ Г-7-002-86. Энергоатомиздат, Москва

  • Prassinos PG, Ravindra MK, Savay JD (1986) Recommendations to the nuclear regulatory commission on trial guidelines for seismic margin reviews of nuclear power plants. Lawrence Livermore National Laboratory, NUREG/CR-4482

  • Qu Z, Ye L (2010) Strength deterioration model based on effective hysteretic energy dissipation for RC-members under cyclic loading. In: Joint conference proceedings, 7th international conference on urban earthquake engineering (7CUEE) & 5th international conference on earthquake engineering (5ICEE), Tokyo, Japan, 3–5 March 2010, Tokyo Institute of Technology

    Google Scholar 

  • Virginia Electric and Power Company (Dominion) (2011) North Anna power station units 1 and 2, North Anna independent spent fuel storage installation—summary report of August 23. 2011 earthquake response and restart readiness determination plan. Virginia Electric and Power Company, Richmond, Virginia 23261, September 17, 2011. https://www.dom.com/about/stations/nuclear/north-anna/pdf/Earthquake_Summary_Report_and_Restart_Plan_091711.pdf

  • Ye L, Ma Q, Miao Z, Guan H, Zhuge Y (2011) Numerical and comparative study of earthquake intensity indices in seismic analysis: the structural design of tall and special buildings. (doi:10.1002/tal.693). Article first published online: 28 Feb 2011. http://onlinelibrary.wiley.com/doi/10.1002/tal.693/pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Tóth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katona, T.J., Tóth, L. Damages indicators for post-earthquake condition assessment. Acta Geod Geophys 48, 333–345 (2013). https://doi.org/10.1007/s40328-013-0021-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40328-013-0021-9

Keywords

Navigation