Skip to main content
Log in

Numerical analysis of the Brusselator model with Robin boundary conditions

  • Published:
SeMA Journal Aims and scope Submit manuscript

Abstract

In this paper, we explore the numerical analysis of Brusselator-type reaction-diffusion equations on open bounded convex domains \({\mathfrak {R}} \subset {\mathbb {R}}^{d}\), where \(d \le 3\), with Robin boundary conditions (RBCs). We introduce two finite element schemes: semi-discrete and fully discrete finite element approximations. We demonstrate the existence and uniqueness of solutions for both semi-discrete and fully discrete finite element approximations. Furthermore, we present the convergence of both semi-discrete and fully discrete approximations to the exact solutions. We explore error bounds between semi-discrete and exact solutions, semi-discrete and fully discrete solutions, as well as fully discrete and exact solutions. Additionally, we illustrate the suitable algorithm for solving the fully discrete finite element approximation for each time step.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that supports the findings of this study are available within the article.

References

  1. Lefever, R., Nicolis, G.: Chemical instabilities and sustained oscillations. J. Theor. Biol. 30(2), 267–284 (1971)

    Article  Google Scholar 

  2. Tyson, J.J.: Some further studies of nonlinear oscillations in chemical systems. J. Chem. Phys. 58(9), 3919–3930 (1973)

    Article  Google Scholar 

  3. Jiwari, R., Yuan, J.: A computational modeling of two dimensional reaction-diffusion Brusselator system arising in chemical processes. J. Math. Chem. 52(6), 1535–1551 (2014)

    Article  MathSciNet  Google Scholar 

  4. Milne, R.D.: Applied Functional Analysis: An Introductory Treatment. Pitman Publishing, New York (1980)

    Google Scholar 

  5. Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems, vol. 1054. Springer, Berlin (1984)

    Google Scholar 

  6. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. SIAM, Philadelphia (2002)

    Book  Google Scholar 

  7. Daners, D.: Robin boundary value problems on arbitrary domains. Trans. Am. Math. Soc. 352(9), 4207–4236 (2000)

    Article  MathSciNet  Google Scholar 

  8. Maz’ya, V.G.: Zur Theorie Sobolewscher Räume, vol. 38. Teubner Texte zur Mathematik, Teubner, Leipzig (1981)

    Google Scholar 

  9. Showalter, R.E.: Variational theory and approximation of boundary value problems. In: Numerical Analysis Lancaster 1984, pp. 140–179. Springer, Berlin (1985)

  10. Al-Juaifri, G.A., Harfash, A.J.: Existence and uniqueness of solution for the nonlinear Brusselator system with robin boundary conditions. Georg. Math. J. (2023). https://doi.org/10.1515/gmj-2023-2091

    Article  Google Scholar 

  11. Twizell, E.H., Gumel, A.B., Cao, Q.: A second-order scheme for the Brusselator reaction-diffusion system. J. Math. Chem. 26(4), 297–316 (1999)

    Article  MathSciNet  Google Scholar 

  12. Ang, W.-T.: The two-dimensional reaction-diffusion Brusselator system: a dual-reciprocity boundary element solution. Eng. Anal. Bound. Elem. 27(9), 897–903 (2003)

    Article  Google Scholar 

  13. Mittal, R.C., Jiwari, R.: Numerical solution of two-dimensional reaction-diffusion Brusselator system. Appl. Math. Comput. 217(12), 5404–5415 (2011)

    MathSciNet  Google Scholar 

  14. Dehghan, M., Abbaszadeh, M.: Variational multiscale element free Galerkin (VMEFG) and local discontinuous Galerkin (LDG) methods for solving two-dimensional Brusselator reaction-diffusion system with and without cross-diffusion. Comput. Methods Appl. Mech. Eng. 300, 770–797 (2016)

    Article  MathSciNet  Google Scholar 

  15. Ali, A., Haq, S., et al.: A computational modeling of the behavior of the two-dimensional reaction-diffusion Brusselator system. Appl. Math. Model. 34(12), 3896–3909 (2010)

    Article  MathSciNet  Google Scholar 

  16. Kleefeld, B., Khaliq, A.Q.M., Wade, B.A.: An ETD Crank–Nicolson method for reaction-diffusion systems. Numer. Methods Partial Differ. Equ. 28(4), 1309–1335 (2012)

    Article  MathSciNet  Google Scholar 

  17. Dehghan, M., Mohammadi, V.: The boundary knot method for the solution of two-dimensional advection reaction-diffusion and Brusselator equations. Int. J. Numer. Methods Heat Fluid Flow 31(1), 106–133 (2020)

    Article  Google Scholar 

  18. Alqahtani, A.M.: Numerical simulation to study the pattern formation of reaction-diffusion Brusselator model arising in triple collision and enzymatic. J. Math. Chem. 56(6), 1543–1566 (2018)

    Article  MathSciNet  Google Scholar 

  19. Micheletti, S., Perotto, S., Farrell, P.E.: A recovery-based error estimator for anisotropic mesh adaptation in CFD. SeMA J. 50(1), 115–137 (2010)

    Article  MathSciNet  Google Scholar 

  20. Becker, R., Mao, S., Trujillo, D.: Adaptive nonconforming finite elements for the Stokes equations. SeMA J. 50(1), 99–113 (2010)

    Article  MathSciNet  Google Scholar 

  21. Pardo, D., Paszynski, M., Collier, N., Alvarez, J., Dalcin, L., Calo, V.M.: A survey on direct solvers for Galerkin methods. SeMA J. 57, 107–134 (2012)

    Article  MathSciNet  Google Scholar 

  22. Guillén-gonzález, F., Tierra, G.: Superconvergence in velocity and pressure for the 3 d time-dependent Navier–Stokes equations. SeMA J. 57, 49–67 (2012)

    Article  MathSciNet  Google Scholar 

  23. Bernardi, C., Rebollo, T.C., Gómez Mármol, M.: Error analysis of a subgrid eddy viscosity multi-scale discretization of the Navier–Stokes equations. SeMA J. 60(1), 51–74 (2012)

    Article  MathSciNet  Google Scholar 

  24. Bernardi, C., Copetti, M.I.M.: Finite element discretization of a nonlinear thermoelastic beam model with penalized unilateral contact. SeMA J. 64, 41–64 (2014)

    Article  MathSciNet  Google Scholar 

  25. Bernardi, C., Orfi, A.Y.: Finite element discretization of the time dependent axisymmetric darcy problem. SeMA J. 68, 53–80 (2015)

    Article  MathSciNet  Google Scholar 

  26. Ouaki, F., Allaire, G., Desroziers, S., Enchéry, G.: A priori error estimate of a multiscale finite element method for transport modeling. SeMa J. 67, 1–37 (2015)

    Article  MathSciNet  Google Scholar 

  27. Bernardi, C., Sayah, T.: A posteriori error analysis of the time dependent Navier–Stokes equations with mixed boundary conditions. SeMA J. 69, 1–23 (2015)

    Article  MathSciNet  Google Scholar 

  28. Barrenechea, G.R., John, V., Knobloch, P., Rankin, R.: A unified analysis of algebraic flux correction schemes for convection-diffusion equations. SeMA J. 75, 655–685 (2018)

    Article  MathSciNet  Google Scholar 

  29. Codina, R.: On HP convergence of stabilized finite element methods for the convection-diffusion equation. SeMA J. 75(4), 591–606 (2018)

    Article  MathSciNet  Google Scholar 

  30. Djoko, J.K., Koko, J.: GLS methods for Stokes equations under boundary condition of friction type: formulation-analysis-numerical schemes and simulations. SeMA J. 80, 581–609 (2022)

    Article  MathSciNet  Google Scholar 

  31. Owolabi, K.M., Pindza, E., Atangana, A.: Analysis and pattern formation scenarios in the superdiffusive system of predation described with caputo operator. Chaos Solitons Fractals 152, 111468 (2021)

    Article  MathSciNet  Google Scholar 

  32. Owolabi, K.M.: Computational dynamics of predator-prey model with the power-law kernel. Results Phys. 21, 103810 (2021)

    Article  Google Scholar 

  33. Owolabi, K.M., Baleanu, D.: Emergent patterns in diffusive turing-like systems with fractional-order operator. Neural Comput. Appl. 33(19), 12703–12720 (2021)

    Article  Google Scholar 

  34. Owolabi, K.M., Pindza, E.: Spatiotemporal chaos in diffusive systems with the Riesz fractional order operator. Chin. J. Phys. 77, 2258–2275 (2022)

    Article  MathSciNet  Google Scholar 

  35. Alqhtani, M., Owolabi, K.M., Saad, K.M.: Spatiotemporal (target) patterns in sub-diffusive predator–prey system with the caputo operator. Chaos Solitons Fractals 160, 112267 (2022)

    Article  MathSciNet  Google Scholar 

  36. Owolabi, K.M.: Analysis and numerical simulation of cross reaction-diffusion systems with the caputo-Fabrizio and Riesz operators. Numer. Methods Partial Differ. Equ. 39(3), 1915–1937 (2023)

    Article  MathSciNet  Google Scholar 

  37. Nochetto, R.H.: Finite element methods for parabolic free boundary problems. In: Advances in Numerical Analysis, pp. 34–95 (1991)

  38. Ciarlet, P.G., Raviart, P.-A.: General lagrange and hermite interpolation in \({R}^{n}\) with applications to finite element methods. Arch. Ration. Mech. Anal. 46(3), 177–199 (1972)

    Article  Google Scholar 

  39. Adams, R.A., Fournier, J.J.F.: Sobolev Spaces. Elsevier, Amsterdam (2003)

    Google Scholar 

  40. Hashim, M.H., Harfash, A.J.: Finite element analysis of a Keller–Segel model with additional cross-diffusion and logistic source. Part I: Space convergence. Comput. Math. Appl. 89(1), 44–56 (2021)

    Article  MathSciNet  Google Scholar 

  41. Hashim, M.H., Harfash, A.J.: Finite element analysis of a Keller–Segel model with additional cross-diffusion and logistic source. Part II: Time convergence and numerical simulation. Comput. Math. Appl. 109(1), 216–234 (2022)

    Article  MathSciNet  Google Scholar 

  42. Hashim, M.H., Harfash, A.J.: Finite element analysis of attraction-repulsion chemotaxis system. Part I: Space convergence. Commun. Appl. Math. Comput. 4(3), 1011–1056 (2022)

    Article  MathSciNet  Google Scholar 

  43. Hashim, M.H., Harfash, A.J.: Finite element analysis of attraction-repulsion chemotaxis system. Part II: Time convergence, error analysis and numerical results. Commun. Appl. Math. Comput. 4(3), 1057–1104 (2022)

    Article  MathSciNet  Google Scholar 

  44. Hassan, S.M., Harfash, A.J.: Finite element approximation of a Keller–Segel model with additional self-and cross-diffusion terms and a logistic source. Commun. Nonlinear Sci. Numer. Simul. 104, 106063 (2022)

    Article  MathSciNet  Google Scholar 

  45. Hassan, S.M., Harfash, A.J.: Finite element analysis of a two-species chemotaxis system with two chemicals. Appl. Numer. Math. 182, 148–175 (2022)

    Article  MathSciNet  Google Scholar 

  46. Hassan, S.M., Harfash, A.J.: Finite element analysis of the two-competing-species Keller–Segel chemotaxis model. Comput. Math. Model. 33(4), 443–471 (2022)

    Article  MathSciNet  Google Scholar 

  47. Hassan, S.M., Harfash, A.J.: Finite element analysis of chemotaxis-growth model with indirect attractant production and logistic source. Int. J. Comput. Math. 100(4), 745–774 (2023)

    Article  MathSciNet  Google Scholar 

  48. Al-Juaifri, G.A., Harfash, A.J.: Finite element analysis of nonlinear reaction-diffusion system of Fitzhugh–Nagumo type with robin boundary conditions. Math. Comput. Simul. 203, 486–517 (2023)

    Article  MathSciNet  Google Scholar 

  49. Ahmed, N., Rafiq, M., Baleanu, D., Rehman, M.A.: Spatio-temporal numerical modeling of auto-catalytic Brusselator model. Rom. J. Phys. 64, 1–14 (2019)

    Google Scholar 

  50. Twizell, E.H., Wang, Y., Price, W.G.: Chaos-free numerical solutions of reaction-diffusion equations. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 430(1880), 541–576 (1990)

    MathSciNet  Google Scholar 

  51. Ahmed, N., Rafiq, M., Rehman, M.A., Iqbal, M.S., Ali, M.: Numerical modeling of three dimensional Brusselator reaction diffusion system. AIP Adv. 9(1), 015205 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

We express our gratitude to two unnamed reviewers for their insightful comments, which have contributed to enhancements in the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akil J. Harfash.

Ethics declarations

Conflict of interest

There are no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Juaifri, G.A., Harfash, A.J. Numerical analysis of the Brusselator model with Robin boundary conditions. SeMA (2024). https://doi.org/10.1007/s40324-024-00361-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40324-024-00361-9

Keywords

Mathematics Subject Classification

Navigation