Skip to main content
Log in

Full discretization of the time dependent Navier–Stokes equations with anisotropic slip boundary condition coupled with the convection–diffusion–reaction equation

  • Published:
SeMA Journal Aims and scope Submit manuscript

Abstract

In this article, we consider the time dependent convection–diffusion–reaction equation coupled with the Navier–Stokes system subject partially to anisotropic slip boundary condition. We formulate the weak problem, and construct the weak solutions by using the approximation approach combined with some compactness results. The discrete solution is constructed by using the finite element method in space and the implicit Euler scheme in time. The convergence of the discrete solution is examined thanks to a priori errors estimation, and the rate of convergence is obtained. We propose an iterative scheme and investigate its convergence using the weak convergence approach. Finally, numerical investigations are performed to validate the theoretical results presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

not applicable.

References

  1. Agroum, R., Aouadi, S.M., Bernardi, C., Satouri, J.: Spectral discretization of the Navier–Stokes equations coupled with the heat equation. ESAIM. Math. Model. Numer. Anal. 49(3), 621–639 (2015)

    Article  MathSciNet  Google Scholar 

  2. Agroum, R., Bernardi, C., Satouri, J.: Spectral discretization of the time-dependent Navier–Stokes problem coupled with the heat equation. Appl. Math. Comput. 49, 59–82 (2015)

    MathSciNet  Google Scholar 

  3. Aldbaissy, R., Chalhoub, N., Djoko, J.K., Sayah, T.: Full discretization of the time dependent Navier–Stokes equations with anisotropic slip boundary condition. Int. J. Numer. Anal. Model. 20(4), 497–517 (2023)

    Article  MathSciNet  Google Scholar 

  4. Aldbaissy, R., Hecht, F., Mansour, G., Sayah, T.: A full discretization of the time-dependent Boussinesq (buoyancy) model with nonlinear viscosity. Calcolo 55(44), 285 (2018)

    Google Scholar 

  5. Arnold, D., Brezzi, F., Fortin, M.: A stable finite element for the Stokes equations. Calcolo 21, 337–344 (1984)

    Article  MathSciNet  Google Scholar 

  6. Bernardi, B., Girault, V.: A local regularisation operation for triangular and quadrilateral finite elements. SIAM J. Numer. Anal. 35, 1893–1916 (1998)

    Article  MathSciNet  Google Scholar 

  7. Brezis, H.: Functional Analysis. Sobolev Spaces and Partial Differential Equations. Springer, New York (2010)

    Google Scholar 

  8. Busse, A., Sandham, N.D.: Influence of an anisotropic slip-length boundary condition on turbulent channel flow. Phys. Fluids 24, 055111 (2012)

    Article  Google Scholar 

  9. Ciarlet, P.G.: Three Dimensional Elasticity. North Holland, Amsterdam (1988)

    Google Scholar 

  10. Clément, P.: Approximation by finite element functions using local regularization. RAIRO Anal. Numér. 9, 77–84 (1975)

    MathSciNet  Google Scholar 

  11. Cooper, A.J., Harris, J.H., Garrett, S.J., Ozkan, M., Thomas, P.J.: The effect of anisotropic and isotropic roughness on the convective stability of the rotating disk boundary layer. Phys. Fluids 27, 014107 (2015)

    Article  Google Scholar 

  12. Dakroub, J., Faddoul, J., Omnes, P., Sayah, T.: A posteriori error estimates for the time-dependent Navier–Stokes system coupled with the convection–diffusion–reaction equation. Adv. Comput. Math. 49, 67 (2023)

    Article  MathSciNet  Google Scholar 

  13. Djoko, J.K., Koko, J., Mbehou, M., Sayah, T.: Stokes and Navier–Stokes equations under power law slip boundary condition: numerical analysis. Comput. Math. Appl. 128, 198–213 (2022)

    Article  MathSciNet  Google Scholar 

  14. Gerstner, P., Heuveline, V.: Finite element approximation of dielectrophoretic force driven flow problems. ESAIM: M2AN 57(3), 1691–1729 (2023)

    Article  MathSciNet  Google Scholar 

  15. Girault, V., Raviart, P.-A.: Finite element methods for the Navier–Stokes equations. In: Theory and Algorithms in Springer Series in Computational Mathematics, vol. 5. Springer, Berlin (1986)

  16. Glowinski, R., Morrocco, A.: Sur l approximation par elements finis d ordre un et la resolution par penalisation-dualite d une classe de problemes de Dirirchlet nonlineaires. Rairo Ser. Rouge-Anal. Numer. 9, 41–76 (1975)

    Google Scholar 

  17. Glowinski, R., Guidoboni, G., Pan, T.-W.: Wall-driven incompressible viscous flow in a two-dimensional semi-circular cavity. J. Comput. Phys. 216, 76–91 (2006)

    Article  MathSciNet  Google Scholar 

  18. Hecht, H.: New development in FreeFem++. J. Numer. Math. 20, 251–266 (2012)

    Article  MathSciNet  Google Scholar 

  19. Jao, H.-C., Chang, K.-M., Chu, L.-M., Li, W.-L.: A lubrication theory for anisotropic slips and flow rheology. Tribol. Trans. 59(2), 252–266 (2016)

    Article  Google Scholar 

  20. Khan, N.A., Sohail, A., Sultan, F.: Effect of anisotropic slip and magnetic field on the flow and heat transfer of Eyring Powell fluid over an infinite rotating disk. Int. J. Fluid Mech. Res. 44(3), 257–273 (2017)

    Article  Google Scholar 

  21. Le Roux, C.: Flows of incompressible viscous liquids with anisotropic wall slip. J. Math. Anal. Appl. 465, 723–730 (2018)

    Article  MathSciNet  Google Scholar 

  22. Le Roux, C.: On the Navier–Stokes equations with anisotropic wall slip conditions. Appl. Math. (2022). https://doi.org/10.21136/AM.2021.0079-21

    Article  Google Scholar 

  23. Liakos, A.: Discretization of the Navier–Stokes equations with slip boundary condition. Numer. Methods Partial Differ. Equ. Int. J. 17, 26–42 (2001)

    Article  MathSciNet  Google Scholar 

  24. Lions, J-L.: Quelques méthodes de résolution des problèmes aux limites non linéaires. Paris, Dunod (1968)

  25. Lu, J.G., Jang, H.K., Lee, S.B., Hwang, W.R.: Characterization on the anisotropic slip for flows over unidirectional fibrous porous media for advanced composites manufacturing. Compos. Part A Appl. Sci. Manuf. 100, 9–19 (2017)

    Article  Google Scholar 

  26. Owens, R.G.: Computational Rheology. Imperial College Press, London (2002)

    Book  Google Scholar 

  27. Sandri, D.A.: Sur l approximation des ecoulements numeriques quasi-Newtoniens dont la viscosite obeit a la loi de puissance ou de Carreau. M2AN 27, 131–155 (1993)

    Article  MathSciNet  Google Scholar 

  28. Scott, L.R., Zhang, S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54, 483–493 (1990)

    Article  MathSciNet  Google Scholar 

  29. Temam, R.: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54, 483–493 (1990)

    Article  MathSciNet  Google Scholar 

  30. Urquiza, J.M., Garon, A., Farinas, M.-I.: Weak imposition of the slip boundary condition on curved boundaries for Stokes flow. J. Comput. Phys. 256, 748–767 (2014)

    Article  MathSciNet  Google Scholar 

  31. Verfürth, R.: Finite element approximation on incompressible Navier–Stokes equations with slip boundary condition. Numer. Math. 50, 697–721 (1986)

    Article  MathSciNet  Google Scholar 

  32. Verfürth, R.: Finite Element Approximation of incompressible Navier–Stokes equations with slip boundary condition II. Numer. Math. 59, 615–636 (1991)

    Article  MathSciNet  Google Scholar 

  33. Vidyasagar, M.: Nonlinear Systems Analysis, 2nd edn. Prentice Hall, Englewood Cliffs (1993)

    Google Scholar 

  34. Zhou, G., Kashiwabara, T., Oikawa, I.: Penalty method for the stationary Navier–Stokes problems under the slip boundary condition. J. Sci. Comput. 68, 339–374 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toni Sayah.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aldbaissy, R., Chalhoub, N., Djoko, J.K. et al. Full discretization of the time dependent Navier–Stokes equations with anisotropic slip boundary condition coupled with the convection–diffusion–reaction equation. SeMA (2024). https://doi.org/10.1007/s40324-024-00355-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40324-024-00355-7

Keywords

Mathematics Subject Classification

Navigation