Skip to main content

Dynamical analysis and encryption key-distribution application of new q-deformed reduced Lorenz system

Abstract

The aim of this work is to analytically investigate the nonlinear dynamic behaviors of a proposed reduced Lorenz system based on q-deformations. The effects of varying the new q-deformation parameter on the dynamical behaviors of the system along with the induced bifurcations of fixed points are explored. In particular, the codimension-one bifurcation analysis is carried out at interior fixed point of the q-deformed system. Explicit conditions for the existence of pitchfork and Neimark–Sacker bifurcations are obtained. Numerical simulations are performed to confirm stability and bifurcation analysis in addition to investigate the effects of variations in system parameters. The changes in system dynamics are explored via the bifurcation diagrams, phase portraits and time series diagrams. Moreover, the quantification of system complex behaviors is depicted through the maximal Lyapunov exponent plots. A cascaded version of the model is proposed to boost its complex dynamics. Then, a chaos-based image encryption scheme, relying on a proposed key-distribution algorithm, is introduced as an application. Finally, several aspects of security analysis are examined for the encryption system to prove its efficiency and reliability against possible attacks.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. 1.

    Abutaleb, A.A.: Discreteness of curved spacetime from GUP. Adv. High Energy Phys. 2013 (2013)

  2. 2.

    Ahmed, E., Hegazi, A., Mansour, M.: Quantum group approach to q-special functions. Int. J. Theor. Phys. 39(1), 41–45 (2000)

    MathSciNet  MATH  Article  Google Scholar 

  3. 3.

    Al-Khedhairi, A., Elsonbaty, A., Elsadany, A.A., Hagras, E.A.: Hybrid cryptosystem based on pseudo chaos of novel fractional order map and elliptic curves. IEEE Access 8, 57733–57748 (2020)

    Article  Google Scholar 

  4. 4.

    Böhm, F., Sahakian, S., Dooms, A., Verschaffelt, G., Van der Sande, G.: Stable high-speed encryption key distribution via synchronization of chaotic optoelectronic oscillators. Phys. Rev. Appl. 13(6), 064014 (2020)

    Article  Google Scholar 

  5. 5.

    Cánovas, J., Muñoz-Guillermo, M.: On the dynamics of the q-deformed logistic map. Phys. Lett. A 383(15), 1742–1754 (2019)

    MathSciNet  MATH  Article  Google Scholar 

  6. 6.

    Chen, C., Wang, T., Kou, Y., Chen, X., Li, X.: Improvement of trace-driven I-cache timing attack on the RSA algorithm. J. Syst. Softw. 86(1), 100–107 (2013)

    Article  Google Scholar 

  7. 7.

    Coppersmith, D.: The data encryption standard (DES) and its strength against attacks. IBM J. Res. Dev. 38(3), 243–250 (1994)

    MATH  Article  Google Scholar 

  8. 8.

    Delduc, F., Lacroix, S., Magro, M., Vicedo, B.: On q-deformed symmetries as Poisson–Lie symmetries and application to Yang–Baxter type models. J. Phys. A Math. Theor. 49(41), 415402 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  9. 9.

    El-Sayed, A., Elsonbaty, A., Elsadany, A., Matouk, A.: Dynamical analysis and circuit simulation of a new fractional-order hyperchaotic system and its discretization. Int. J. Bifurc. Chaos 26(13), 1650222 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  10. 10.

    Elabbasy, E., Elsadany, A., Zhang, Y.: Bifurcation analysis and chaos in a discrete reduced Lorenz system. Appl. Math. Comput. 228, 184–194 (2014)

    MathSciNet  MATH  Google Scholar 

  11. 11.

    Elsadany, A., Yousef, A., Elsonbaty, A.: Further analytical bifurcation analysis and applications of coupled logistic maps. Appl. Math. Comput. 338, 314–336 (2018)

    MathSciNet  MATH  Google Scholar 

  12. 12.

    Elsonbaty, A., Hegazy, S.F., Obayya, S.S.: Simultaneous suppression of time-delay signature in intensity and phase of dual-channel chaos communication. IEEE J. Quantum Electron. 51(9), 1–9 (2015)

    Article  Google Scholar 

  13. 13.

    Elsonbaty, A., Hegazy, S.F., Obayya, S.S.: Simultaneous concealment of time delay signature in chaotic nanolaser with hybrid feedback. Opt. Lasers Eng. 107, 342–351 (2018)

    Article  Google Scholar 

  14. 14.

    Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, vol. 42. Springer Science & Business Media, Berlin (2013)

    MATH  Google Scholar 

  15. 15.

    Herrmann, R.: Common aspects of q-deformed lie algebras and fractional calculus. Physica A Stat. Mech. Appl. 389(21), 4613–4622 (2010)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Huang, X.: Image encryption algorithm using chaotic Chebyshev generator. Nonlinear Dyn. 67(4), 2411–2417 (2012)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Hussain, I., Shah, T., Gondal, M.A.: Application of S-box and chaotic map for image encryption. Math. Comput. Model. 57(9–10), 2576–2579 (2013)

    MATH  Article  Google Scholar 

  18. 18.

    Ismail, S.M., Said, L.A., Radwan, A.G., Madian, A.H., Abu-Elyazeed, M.F.: Generalized double-humped logistic map-based medical image encryption. J. Adv. Res. 10, 85–98 (2018)

    Article  Google Scholar 

  19. 19.

    Iyengar, S.V., Balakrishnan, J.: q-Deformations and the dynamics of the larch bud-moth population cycles. In: Nature’s Longest Threads: New Frontiers in the Mathematics and Physics of Information in Biology, pp. 65–80. World Scientific, Singapore (2014)

  20. 20.

    Iyengar, S.V., Balakrishnan, J.: The q-deformed Tinkerbell map. Chaos Interdiscip. J. Nonlinear Sci. 28(11), 113102 (2018)

    MATH  Article  Google Scholar 

  21. 21.

    Jaganathan, R., Sinha, S.: A q-deformed nonlinear map. Phys. Lett. A 338(3–5), 277–287 (2005)

    MathSciNet  MATH  Article  Google Scholar 

  22. 22.

    Kanso, A., Smaoui, N.: Logistic chaotic maps for binary numbers generations. Chaos Solitons Fractals 40(5), 2557–2568 (2009)

    MATH  Article  Google Scholar 

  23. 23.

    Keuninckx, L., Soriano, M.C., Fischer, I., Mirasso, C.R., Nguimdo, R.M., Van der Sande, G.: Encryption key distribution via chaos synchronization. Sci. Rep. 7, 43428 (2017)

    Article  Google Scholar 

  24. 24.

    Khan, J.S., Boulila, W., Ahmad, J., Rubaiee, S., Rehman, A.U., Alroobaea, R., Buchanan, W.J.: DNA and plaintext dependent chaotic visual selective image encryption. IEEE Access 8, 159732–159744 (2020)

    Article  Google Scholar 

  25. 25.

    Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory, vol. 112. Springer Science & Business Media, Berlin (2013)

    Google Scholar 

  26. 26.

    Liu, H., Wang, X.: Color image encryption based on one-time keys and robust chaotic maps. Comput. Math. Appl. 59(10), 3320–3327 (2010)

    MathSciNet  MATH  Article  Google Scholar 

  27. 27.

    Liu, H., Wang, X.: Color image encryption using spatial bit-level permutation and high-dimension chaotic system. Opt. Commun. 284(16–17), 3895–3903 (2011)

    Article  Google Scholar 

  28. 28.

    Liu, H., Wang, X., et al.: Image encryption using DNA complementary rule and chaotic maps. Appl. Soft Comput. 12(5), 1457–1466 (2012)

    Article  Google Scholar 

  29. 29.

    Luo, C., Liu, B.-Q., Hou, H.-S.: Fractional chaotic maps with q-deformation. Appl. Math. Comput. 393, 125759 (2021)

    MathSciNet  MATH  Google Scholar 

  30. 30.

    Masood, F., Driss, M., Boulila, W., Ahmad, J., Rehman, S.U., Jan, S.U., Qayyum, A., Buchanan, W.J.: A lightweight chaos-based medical image encryption scheme using random shuffling and XOR operations. Wirel. Pers. Commun. 1–28 (2021)

  31. 31.

    Murillo-Escobar, M.A., Cruz-Hernández, C., Abundiz-Pérez, F., López-Gutiérrez, R.M., Del Campo, O.A.: A RGB image encryption algorithm based on total plain image characteristics and chaos. Signal Process. 109, 119–131 (2015)

    Article  Google Scholar 

  32. 32.

    Patidar, V., Pareek, N., Purohit, G., Sud, K.: Modified substitution-diffusion image cipher using chaotic standard and logistic maps. Commun. Nonlinear Sci. Numer. Simul. 15(10), 2755–2765 (2010)

    MathSciNet  MATH  Article  Google Scholar 

  33. 33.

    Patidar, V., Purohit, G., Sud, K.: A numerical exploration of the dynamical behaviour of q-deformed nonlinear maps. In: Chaotic Systems: Theory and Applications, pp. 257–267. World Scientific, Singapore (2010)

  34. 34.

    Patidar, V., Purohit, G., Sud, K.K.: Dynamical behavior of q-deformed Henon map. Int. J. Bifurc. Chaos 21(05), 1349–1356 (2011)

    MathSciNet  MATH  Article  Google Scholar 

  35. 35.

    Patidar, V., Sud, K.: A comparative study on the co-existing attractors in the Gaussian map and its q-deformed version. Commun. Nonlinear Sci. Numer. Simul. 14(3), 827–838 (2009)

    Article  Google Scholar 

  36. 36.

    Qayyum, A., Ahmad, J., Boulila, W., Rubaiee, S., Masood, F., Khan, F., Buchanan, W.J., et al.: Chaos-based confusion and diffusion of image pixels using dynamic substitution. IEEE Access 8, 140876–140895 (2020)

    Article  Google Scholar 

  37. 37.

    Saavedra, I., Utreras, C.: A generalization of quantum mechanics for high energies and quark physics. Phys. Lett. B 98(1–2), 74–76 (1981)

    Article  Google Scholar 

  38. 38.

    Salman, S., Elsadany, A.: On the bifurcation of Marotto’s map and its application in image encryption. J. Comput. Appl. Math. 328, 177–196 (2018)

    MathSciNet  MATH  Article  Google Scholar 

  39. 39.

    Semary, M.S., Fouda, M.E., Hassan, H.N., Radwan, A.G.: Realization of fractional-order capacitor based on passive symmetric network. J. Adv. Res. 18, 147–159 (2019)

    Article  Google Scholar 

  40. 40.

    Shah, S.A., Ahmad, J., Masood, F., Shah, S.Y., Pervaiz, H., Taylor, W., Imran, M.A., Abbasi, Q.H.: Privacy-preserving wandering behavior sensing in dementia patients using modified logistic and dynamic newton leipnik maps. IEEE Sens. J. 21(3), 3669–3679 (2020)

    Article  Google Scholar 

  41. 41.

    Shrimali, M.D., Banerjee, S.: Delayed q-deformed logistic map. Commun. Nonlinear Sci. Numer. Simul. 18(11), 3126–3133 (2013)

    MathSciNet  MATH  Article  Google Scholar 

  42. 42.

    Sun, F., Lü, Z., Liu, S.: A new cryptosystem based on spatial chaotic system. Opt. Commun. 283(10), 2066–2073 (2010)

    Article  Google Scholar 

  43. 43.

    Sviratcheva, K., Bahri, C., Georgieva, A., Draayer, J.: Physical significance of q deformation and many-body interactions in nuclei. Phys. Rev. Lett. 93(15), 152501 (2004)

    Article  Google Scholar 

  44. 44.

    Tong, X.J., Wang, Z., Zhang, M., Liu, Y., Xu, H., Ma, J.: An image encryption algorithm based on the perturbed high-dimensional chaotic map. Nonlinear Dyn. 80(3), 1493–1508 (2015)

    MathSciNet  MATH  Article  Google Scholar 

  45. 45.

    Wang, X., Feng, L., Zhao, H.: Fast image encryption algorithm based on parallel computing system. Inf. Sci. 486, 340–358 (2019)

    MATH  Article  Google Scholar 

  46. 46.

    Wang, X., Gao, S.: Image encryption algorithm based on the matrix semi-tensor product with a compound secret key produced by a Boolean network. Inf. Sci. 539, 195–214 (2020)

    MathSciNet  Article  Google Scholar 

  47. 47.

    Wang, X., Guo, K.: A new image alternate encryption algorithm based on chaotic map. Nonlinear Dyn. 76(4), 1943–1950 (2014)

    MATH  Article  Google Scholar 

  48. 48.

    Wang, X., Liu, C., Jiang, D.: A novel triple-image encryption and hiding algorithm based on chaos, compressive sensing and 3D DCT. Inf. Sci. (2021)

  49. 49.

    Wang, X., Liu, L., Zhang, Y.: A novel chaotic block image encryption algorithm based on dynamic random growth technique. Opt. Lasers Eng. 66, 10–18 (2015)

    Article  Google Scholar 

  50. 50.

    Wang, X., Luan, D.: A novel image encryption algorithm using chaos and reversible cellular automata. Commun. Nonlinear Sci. Numer. Simul. 18(11), 3075–3085 (2013)

    MathSciNet  MATH  Article  Google Scholar 

  51. 51.

    Wang, X., Teng, L., Qin, X.: A novel colour image encryption algorithm based on chaos. Signal Process. 92(4), 1101–1108 (2012)

    MathSciNet  Article  Google Scholar 

  52. 52.

    Wang, X., Yang, J.: A privacy image encryption algorithm based on piecewise coupled map lattice with multi dynamic coupling coefficient. Inf. Sci. 569, 217–240 (2021)

    MathSciNet  Article  Google Scholar 

  53. 53.

    Wang, X.-Y., Yang, L., Liu, R., Kadir, A.: A chaotic image encryption algorithm based on perceptron model. Nonlinear Dyn. 62(3), 615–621 (2010)

    MathSciNet  MATH  Article  Google Scholar 

  54. 54.

    Wang, X.-Y., Zhang, Y.-Q., Bao, X.-M.: A novel chaotic image encryption scheme using DNA sequence operations. Opt. Lasers Eng. 73, 53–61 (2015)

    Article  Google Scholar 

  55. 55.

    Xian, Y., Wang, X.: Fractal sorting matrix and its application on chaotic image encryption. Inf. Sci. 547, 1154–1169 (2021)

    MathSciNet  Article  Google Scholar 

  56. 56.

    Ye, G., Pan, C., Huang, X., Mei, Q.: An efficient pixel-level chaotic image encryption algorithm. Nonlinear Dyn. 94(1), 745–756 (2018)

    Article  Google Scholar 

  57. 57.

    Ye, G., Wong, K.-W.: An image encryption scheme based on time-delay and hyperchaotic system. Nonlinear Dyn. 71(1–2), 259–267 (2013)

    MathSciNet  Article  Google Scholar 

  58. 58.

    Zhang, Y.-Q., Wang, X.-Y.: A symmetric image encryption algorithm based on mixed linear–nonlinear coupled map lattice. Inf. Sci. 273, 329–351 (2014)

    Article  Google Scholar 

  59. 59.

    Zhang, Y.-Q., Wang, X.-Y.: A new image encryption algorithm based on non-adjacent coupled map lattices. Appl. Soft Comput. 26, 10–20 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express their thanks to the editor and the anonymous referees for their helpful suggestions and comments that have led to the present improved version of the original manuscript. The corresponding author would like to thank the Prince Sattam bin Abdulaziz University (Grant no. 2021) for their support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. A. Elsadany.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Elsonbaty, A., Salman, S.M., Aldurayhim, A. et al. Dynamical analysis and encryption key-distribution application of new q-deformed reduced Lorenz system. SeMA (2021). https://doi.org/10.1007/s40324-021-00271-0

Download citation

Keywords

  • q-Deformed map
  • Reduced Lorenz system
  • Key-distribution
  • Local stability
  • Codimension-one bifurcation
  • Image encryption.

Mathematics Subject Classification

  • 39A30
  • 39A50
  • 34C05
  • 93D15