A study on the local convergence and complex dynamics of Kou’s family of iterative methods


Obtaining convergence domain is an important task in the study of iterative schemes. Analysis of local convergence of an iterative procedure provides essential information about its convergence domain around a solution. In this manuscript, we study the local analysis of the uni-parametric Kou’s class of iterative algorithms for addressing nonlinear equations. This approach expands the utility of the methods by preventing the use of Taylor expansion in convergence analysis. In the view of extending the applicability of these methods, the convergence analysis is shown using Lipschitz condition on the first derivative. Our study provides radii of convergence balls and the uniqueness of the solution along with the calculable error distances. The complex dynamical analysis of the family is also presented. Numerical examples are solved to show that our theoretical conclusions work well in the situation where the earlier analysis cannot be implemented.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. 1.

    Amat, S., Busquier, S., Plaza, S.: Review of some iterative root-finding methods from a dynamical point of view. Sci. Ser. A Math. Sci. 10, 3–35 (2004)

    MathSciNet  MATH  Google Scholar 

  2. 2.

    Amat, S., Busquier, S., Plaza, S.: Dynamics of the King and Jarratt iterations. Aequationes Math. 69(3), 212–223 (2005)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Amat, S., Busquier, S., Plaza, S.: Chaotic dynamics of a third-order Newton-type method. J. Math. Anal. Appl. 366(1), 24–32 (2010)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Amat, S., Argyros, I. K., Busquier. S., Hernández-Verón, M. A., Martínez, E.: On the local convergence study for an efficient k-step iterative method. J. Comput. Appl. Math. 343, 753–761 (2018)

  5. 5.

    Argyros, I.K.: Convergence and Application of Newton-type Iterations. Springer, New York (2008)

    MATH  Google Scholar 

  6. 6.

    Argyros, I.K., Cho, Y.J., Hilout, S.: Numerical Methods for Equations and its Applications. Taylor & Francis, CRC Press, New York (2012)

    Book  Google Scholar 

  7. 7.

    Argyros, I.K., Magreñán, Á.A.: On the convergence of an optimal fourth-order family of methods and its dynamics. Appl. Math. Comput. 252(1), 336–346 (2015)

    MathSciNet  MATH  Google Scholar 

  8. 8.

    Argyros, I.K., Magreñán, Á.A.: A study on the local convergence and the dynamics of Chebyshev-Halley-type methods free from second derivative. Numer. Algorithms 71(1), 1–23 (2015)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Argyros, I.K., Cho, Y.J., George, S.: Local convergence for some third order iterative methods under weak conditions. J. Korean Math. Soc. 53(4), 781–793 (2016)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Argyros, I.K., Sharma, D., Parhi, S.K.: On the local convergence of Weerakoon–Fernando method with \(\omega \) continuity condition in Banach spaces. SeMA J. 77(3), 291–304 (2020). https://doi.org/10.1007/s40324-020-00217-y

    MathSciNet  Article  MATH  Google Scholar 

  11. 11.

    Argyros, I.K., George, S.: On the complexity of extending the convergence region for Traub’s method. J. Complex. 56, 101423 (2020). https://doi.org/10.1016/j.jco.2019.101423

  12. 12.

    Argyros, I.K., George, S.: Ball comparison between four fourth convergence order methods under the same set of hypotheses for solving equations. Int. J. Appl. Comput. Math. 7, 9 (2021). https://doi.org/10.1007/s40819-020-00946-8

  13. 13.

    Behl, R., Cordero, A., Motsa, S.S., Torregrosa, J.R., Kanwar, V.: An optimal fourth-order family of methods for multiple roots and its dynamics. Appl. Math. Comput. 71(4), 775–796 (2016)

    MathSciNet  MATH  Google Scholar 

  14. 14.

    Candela, V., Marquina, A.: Recurrence relations for rational cubic methods I: The Halley method. Computing 44(2), 169–184 (1990)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Chicharro, F., Cordero, A., Gutiérrez, J.M., Torregrosa, J.R.: Complex dynamics of derivative-free methods for nonlinear equations. Appl. Math. Comput. 219, 7023–7035 (2013)

    MathSciNet  MATH  Google Scholar 

  16. 16.

    Chicharro, F., Cordero, A., Torregrosa, J.R.: Drawing dynamical and parameters planes of iterative families and methods. Sci. World J. 2013 (2013) (Article ID 780153)

  17. 17.

    Cordero, A., García-Maimó, J., Torregrosa, J.R., Vassileva, M.P., Vindel, P.: Chaos in King’s iterative family. Appl. Math. Lett. 26, 842–848 (2013)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Cordero, A., Torregrosa, J.R., Vindel, P.: Dynamics of a family of Chebyshev–Halley type methods. Appl. Math. Comput. 219, 8568–8583 (2013)

    MathSciNet  MATH  Google Scholar 

  19. 19.

    Cordero, A., Guasp, L., Torregrosa, J.R.: Choosing the most stable members of Kou’s family of iterative methods. J. Comput. Appl. Math. 330, 759–769 (2018)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Cordero, A., Villalba, E.G., Torregrosa, J.R., Triguero-Navarro, P.: Convergence and stability of a parametric class of iterative schemes for solving nonlinear systems. Mathematics 86, 1–19 (2021). https://doi.org/10.3390/math9010086

  21. 21.

    Ezquerro, J., Hernández, M.A.: On Halley-type iteration with free second derivative. J. Comput. Appl. Math. 170, 455–459 (2004)

    MathSciNet  Article  Google Scholar 

  22. 22.

    Ezquerro, J.A., González, D., Hernández, M.A.: Majorizing sequences for Newton’s method from initial value problems. J. Comput. Appl. Math. 236, 2246–2258 (2012)

    MathSciNet  Article  Google Scholar 

  23. 23.

    Grau, M., Diaz-Barrero, J.L.: An improvement of the Euler–Chebyshev iterative method. J. Math. Anal. Appl. 315, 1–7 (2006)

    MathSciNet  Article  Google Scholar 

  24. 24.

    Kou, J., Li, Y., Wang, X.: A composite fourth-order iterative method for solving non-linear equations. Appl. Math. Comput. 184, 471–475 (2007)

    MathSciNet  MATH  Google Scholar 

  25. 25.

    Magreñán, Á.A.: Different anomalies in a Jarratt family of iterative root-finding methods. Appl. Math. Comput. 233, 29–38 (2014)

    MathSciNet  MATH  Google Scholar 

  26. 26.

    Maroju, P., Magreñán, Á.A., Motsa, S.S., Sarría, Í.: Second derivative free sixth order continuation method for solving nonlinear equations with applications. J. Math. Chem. 56(7), 2099–2116 (2018)

    MathSciNet  Article  Google Scholar 

  27. 27.

    Maroju, P., Magreñán, Á.A., Sarría, Í., Kumar, A.: Local convergence of fourth and fifth order parametric family of iterative methods in Banach spaces. J. Math. Chem. 58, 686–705 (2020)

    MathSciNet  Article  Google Scholar 

  28. 28.

    Neta, B., Scott, M., Chun, C.: Basins of attraction for several methods to find simple roots of nonlinear equations. Appl. Math. Comput. 218, 10548–10556 (2012)

    MathSciNet  MATH  Google Scholar 

  29. 29.

    Özban, A.Y.: Some new variants of Newton’s method. Appl. Math. Lett. 17(6), 677–682 (2004)

    MathSciNet  Article  Google Scholar 

  30. 30.

    Petković, M.S., Neta, B., Petković, L., Dz̃unić, D.: Multipoint Methods for Solving Nonlinear Equations. Elsevier, Amsterdam (2013)

  31. 31.

    Rall, L.B.: Computational Solution of Nonlinear Operator Equations. Robert E. Krieger, New York (1979)

    MATH  Google Scholar 

  32. 32.

    Ren, H., Wu, Q., Bi, W.: New variants of Jarratt method with sixth-order convergence. Numer. Algorithms 52(4), 585–603 (2009)

    MathSciNet  Article  Google Scholar 

  33. 33.

    Sharma, D., Parhi, S.K.: Local convergence and complex dynamics of a uni-parametric family of iterative schemes. Int. J. Appl. Comput. Math. 6(3) (2020). https://doi.org/10.1007/s40819-020-00841-2 (Article number: 83)

  34. 34.

    Sharma, D., Parhi, S.K.: Complex dynamics of a sixth and seventh order family of root finding methods. SeMA J. 77(3), 339–349 (2020). https://doi.org/10.1007/s40324-020-00223-0

    MathSciNet  Article  MATH  Google Scholar 

  35. 35.

    Sharma, J.R., Guna, R.K., Sharma, R.: Efficient Jarratt-like methods for solving systems of nonlinear equations. Calcolo 51, 193–210 (2014). https://doi.org/10.1007/s10092-013-0097-1

    MathSciNet  Article  MATH  Google Scholar 

  36. 36.

    Singh, M.K., Singh, A.K.: Variant of Newton’s method using Simpson’s 3/8th Rule. Int. J. Appl. Comput. Math. 6 (2020). https://doi.org/10.1007/s40819-020-0770-4 (Article number: 20)

  37. 37.

    Singh, S., Gupta, D.K., Badoni, R.P., Martínez, E., Hueso, J.L.: Local convergence of a parameter based iteration with Hölder continuous derivative in Banach spaces. Calcolo 54(2), 527–539 (2017)

    MathSciNet  Article  Google Scholar 

  38. 38.

    Traub, J.F.: Iterative Methods for Solution of Equations. Prentice-Hall, Englewood Cliffs (1964)

    MATH  Google Scholar 

  39. 39.

    Weerakoon, S., Fernando, T.G.I.: A variant of Newton’s method with accelerated third-order convergence. Appl. Math. Lett. 13(8), 87–93 (2000)

    MathSciNet  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Debasis Sharma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Argyros, I.K., Sharma, D., Parhi, S.K. et al. A study on the local convergence and complex dynamics of Kou’s family of iterative methods. SeMA (2021). https://doi.org/10.1007/s40324-021-00257-y

Download citation


  • Nonlinear equations
  • Iterative methods
  • Local convergence
  • Lipschitz continuity
  • Parameter space
  • Dynamical plane

Mathematics Subject Classification

  • 37F10
  • 65D99
  • 65G99
  • 65J15
  • 65Y20