Homogenization of a quasilinear elliptic problem in a fractal-reinforced structure


We consider a quasilinear elliptic boundary value problem posed in a three-dimensional bounded domain containing thin vertical strips constructed on horizontal iterated von Koch curves. We study the asymptotic behavior of this problem as the width of strips tends to zero and the sequence of iterated curves converges in the Hausdorff metric to the von Koch fractal curve. We derive the effective energy of the structure with respect to a critical size of the boundary layers taking place in the neighbourhoods of the strips. This energy contains new properties implying a nonlocal term and a singular integral energy supported within the fractal curve.

This is a preview of subscription content, access via your institution.

Fig. 1


  1. 1.

    Adkins, J.E.: Finite plane deformations of thin elastic sheets reinforced with inextensible cords. Philos. Trans. R. Soc. Lond. A 249, 125–150 (1956)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Adkins, J.E.: Cylindrically symmetrical deformations of incompressible elastic materials reinforced with inextensible cords. J. Ration. Mech. Anal. 5, 189–202 (1956)

    MathSciNet  MATH  Google Scholar 

  3. 3.

    Adkins, J.E.: A three-dimensional problem for highly elastic materials subject to constraints. Q. J. Mech. Appl. Math. 11, 88–97 (1958)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Adkins, J.E., Rivlin, R.S.: Large elastic deformations of isotropic materials X. Reinforcement by inextensible cords. Philos. Trans. R. Soc. Lond. A 248, 201–223 (1955)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Attouch, H.: Variational convergence for functions and operators. Appl. Math. Series. London, Pitman, (1984)

  6. 6.

    Attouch, H., Picard, C.: Variational inequalities with varying obstacles. J. Func. Anal. 50, 329–386 (1983)

    Article  Google Scholar 

  7. 7.

    Bellieud, M., Bouchitté, G.: Homogenization of elliptic problems in a fiber reinforced structure. Non local effects. Ann. Scuola Norm. Sup. Pisa, Cl. Sci. IV 26(3), 407–436 (1998)

    MathSciNet  MATH  Google Scholar 

  8. 8.

    Camar-Eddine, M., Seppecher, P.: Determination of the closure of the set of elasticity functionals. Arch. Rational Mech. Anal. 170(3), 211–245 (2003)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Capitanelli, R.: Nonlinear energy forms on certain fractal curves. J. Nonlinear Convex Anal. 3(1), 67–80 (2002)

    MathSciNet  MATH  Google Scholar 

  10. 10.

    Capitanelli, R.: Homogeneous p-Lagrangians and self-similarity. Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. (5) 27, 215–235 (2003)

    MathSciNet  Google Scholar 

  11. 11.

    Capitanelli, R., Lancia, M.R.: Nonlinear energy forms and Lipschitz spaces on the Koch curve. J. Convex Anal. 9(1), 245–257 (2002)

    MathSciNet  MATH  Google Scholar 

  12. 12.

    Capitanelli, R., Lancia, M.R., Vivaldi, M.A.: Insulating layers of fractal type. Differ. Integ. Equs 26(9/10), 1055–1076 (2013)

    MathSciNet  MATH  Google Scholar 

  13. 13.

    Capitanelli, R., Vivaldi, M.A.: Reinforcement problems for variational inequalities on fractal sets. Calc. Var. 54, 2751–2783 (2015)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Capitanelli, R., Vivaldi, M.A.: Dynamical quasi-filling fractal layers. Siam J. Math. Anal. 48(6), 3931–3961 (2016)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Creo, S., Lancia, M.R., Vélez-Santiago, A., Vernole, P.: Approximation of a nonlinear fractal energy functional on varying Hilbert spaces. Commun. Pure Appl. Anal. 17(2), 647–669 (2018)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Dal Maso, G.: An introduction to \({\varGamma } \) -convergence, PNLDEA 8. Birkhäuser, Basel (1993)

    Book  Google Scholar 

  17. 17.

    El Jarroudi, M.: Homogenization of a nonlinear elastic fibre-reinforced composite: A second gradient nonlinear elastic material. J. Math. Anal. Appl. 403, 487–505 (2013)

    MathSciNet  Article  Google Scholar 

  18. 18.

    El Jarroudi, M.: A third gradient elastic material resulting from the homogenization of a von Kármán ribbon-reinforced composite. Z. Angew. Math. Mech. 98(9), 1666–1685 (2018)

    MathSciNet  Article  Google Scholar 

  19. 19.

    El Jarroudi, M.: Homogenization of an elastic material reinforced with thin rigid von Kármán ribbons. Math. Mech. Solids 24(7), 1965–1991 (2019)

    MathSciNet  Article  Google Scholar 

  20. 20.

    El Jarroudi, M., Brillard, A.: Asymptotic behaviour of a cylindrical elastic structure periodically reinforced along identical fibres. IMA J. Appl. Math. 66, 567–590 (2001)

    MathSciNet  Article  Google Scholar 

  21. 21.

    El Jarroudi, M., Er-Riani, M.: Homogenization of rectangular cross-section fibre-reinforced materials: bending-torsion effects. Continuum Mech. Thermodyn. 28, 1127–1155 (2016)

    MathSciNet  Article  Google Scholar 

  22. 22.

    El Jarroudi, M., Er-Riani, M.: Homogenization of elastic materials containing self-similar rigid micro-inclusions. Continuum Mech. Thermodyn. 31(2), 457–474 (2019)

    MathSciNet  Article  Google Scholar 

  23. 23.

    El Jarroudi, M., Er-Riani, M.: Homogenization of elastic materials containing self-similar microcracks. Quart. J. Mech. Appl. Math 72(2), 131–155 (2019)

    MathSciNet  Article  Google Scholar 

  24. 24.

    El Jarroudi, M., Er-Riani, M., Lahrouz, A., Settati, A.: Homogenization of elastic materials reinforced by rigid notched fibres. Appl. Anal. 97(5), 705–738 (2018)

    MathSciNet  Article  Google Scholar 

  25. 25.

    Falconer, K.: Techniques in fractal geometry. J. Wiley and sons, Chichester (1997)

    MATH  Google Scholar 

  26. 26.

    Freiberg, U.R., Lancia, M.R.: Energy form on a closed fractal curves. Z. Anal. Anwendungen 23(1), 115–137 (2004)

    MathSciNet  Article  Google Scholar 

  27. 27.

    Hutchinson, J.E.: Fractals and self-similarity. Indiana Univ. Math. J. 30(5), 713–747 (1981)

    MathSciNet  Article  Google Scholar 

  28. 28.

    Jonsson, A., Wallin, H.: Boundary value problems and Brownian motion on fractals. Chaos Soli. Frac. 8(2), 191–205 (1997)

    MathSciNet  Article  Google Scholar 

  29. 29.

    Jonsson, A., Wallin, H.: The dual of Besov spaces on fractals. Stud. Math. 112(3), 285–300 (1995)

    MathSciNet  Article  Google Scholar 

  30. 30.

    Kato, T.: Perturbation theory for linear operators. Springer, Berlin (1966)

    Book  Google Scholar 

  31. 31.

    Khruslov, E.Ya.:omogenized models of composite media In: Composite Media and Homogenization Theory, ed. by G. Dal Maso and G.F. Dell’Antonio, in Progress in Nonlinear Differential Equations and Their Applications, Birkhaüser, 159-182 (1991)

  32. 32.

    Kozlov, S.M.: Harmonization and homogenization on fractals. Comm. Math. Phys. 158, 158–431 (1993)

    MathSciNet  Article  Google Scholar 

  33. 33.

    Lancia, M.R., Vélez-Santiago, A., Vernole, P.: Quasi-linear Venttsel’ problems with nonlocal boundary conditions on fractal domains. Nonlin. Anal. RWA 35, 265–291 (2017)

    MathSciNet  Article  Google Scholar 

  34. 34.

    Lancia, M.R., Vivaldi, M.A.: Asymptotic convergence of transmission energy forms. Adv. Math. Sc. Appl. 13, 315–341 (2003)

    MathSciNet  MATH  Google Scholar 

  35. 35.

    Mosco, U.: Convergence of convex sets and of solutions of variational inequalities. Adv. Math. 3, 510–585 (1969)

    MathSciNet  Article  Google Scholar 

  36. 36.

    Mosco, U., Vivaldi, M.A.: An example of fractal singular homogenization. Georgian Math. J. 14(1), 169–194 (2007)

    MathSciNet  Article  Google Scholar 

  37. 37.

    Mosco, U., Vivaldi, M.A.: Fractal reinforcement of elastic membranes. Arch. Rat. Mech. Anal. 194, 49–74 (2009)

    MathSciNet  Article  Google Scholar 

  38. 38.

    Mosco, U., Vivaldi, M.A.: Thin fractal fibers. Math. Meth. Appl. Sci. 36, 2048–2068 (2013)

    MathSciNet  MATH  Google Scholar 

  39. 39.

    Mosco, U., Vivaldi, M.A.: Layered fractal fibers and potentials. J. Math. Pures Appl. 103, 1198–1227 (2015)

    MathSciNet  Article  Google Scholar 

  40. 40.

    Rivlin, R.S.: Plane strain of a net formed by inextensible cords. Indiana Univ. Math. J. 4(6), 951–974 (1955)

    MathSciNet  Article  Google Scholar 

  41. 41.

    Rivlin, R.S.: The deformation of a membrane formed by inextensible cords. Arch. Rational Mech. Anal. 2, 447–476 (1959)

    MathSciNet  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Mustapha El Jarroudi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

El Jarroudi, M. Homogenization of a quasilinear elliptic problem in a fractal-reinforced structure. SeMA (2021). https://doi.org/10.1007/s40324-021-00250-5

Download citation


  • Three-dimensional bounded domain
  • Fractal thin strips
  • Quasilinear elliptic boundary value problem
  • Homogenization
  • Effective energy