Skip to main content
Log in

Solving nonlinear differential equations in astrophysics and fluid mechanics using the generalized pseudospectral method

  • Published:
SeMA Journal Aims and scope Submit manuscript

Abstract

In this study, a combined numerical method is introduced and used to solve nonlinear differential equations. Because of the use of this method of generalized Lagrange functions and their derivative operational matrices, they were first introduced, and then using these new functions, the generalized pseudospectral method as a new numerical method was combined with the quasilinearization method, and an efficient method is produced. Due to the use of derivative operational matrices and conversion of a nonlinear differential equation to a sequence of linear differential equations, in performing this method, it is not necessary to calculate the analytical derivative and solve the system of nonlinear algebraic equations, which reduces computational costs. The efficiency and convergence of the method have been demonstrated by implementing it on two important equations in astrophysics and fluid mechanics, and comparing the results with other methods and graphical graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

\(\varepsilon \) and \(\delta \) :

The material fluid parameters

M :

The polytropic index

\(L^{\phi }_j(x)\) :

The generalized Lagrange functions (basis functions)

\({\varvec{\mathrm {D}}}^{\mathrm {(}m\mathrm {)}}\) :

The m-order derivative operational matrix

\(\phi (x)\) :

The generalizer function

\({\delta }_{ij}\) :

The Kronecker delta

N :

The number of basis functions

[ab]:

The interval of basis functions

References

  1. Adibi, H., Rismani, A.M.: On using a modified Legendre-spectral method for solving singular IVPs of Lane–Emden type. Comput. Math. Appl. 60, 2126–2130 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Azarnavid, B., Parvaneh, F., Abbasbandy, S.: Picard-reproducing kernel Hilbert space method for solving generalized singular nonlinear Lane-Emden type equations. Math. Model. Anal. 20(6), 754–767 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bataineh, A.S., Noorani, M.S.H., Hashim, I.: Solutions of time-dependent Emden-Fowler type equations by homotopy analysis method. Phys. Lett. A 371, 72–82 (2007)

    Article  MATH  Google Scholar 

  4. Bellman, R.E., Kalaba, R.E.: Quasilinearization and Nonlinear Boundary-Value Problems. Elsevier Publishing Company, New York (1965)

    MATH  Google Scholar 

  5. Bhattacharyya, K., Mukhopadhyay, S., Layek, G.C., Pop, I.: Effects of thermal radiation on micropolar fluid flow and heat transfer over a porous shrinking sheet. Int. J. Heat Mass Transf. 55, 2945–2952 (2012)

    Article  Google Scholar 

  6. Bhrawy, A.H., Alofi, A.S.: A Jacobi–Gauss collocation method for solving nonlinear Lane–Emden type equations. Commun. Nonlinear Sci. Numer. Simul. 17, 62–70 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Boyd, J.P.: Chebyshev spectral methods and the Lane–Emden problem. Numer. Math. Theory Methods Appl. 4, 142–157 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Boyd, J.P.: Rational Chebyshev series for the Thomas–Fermi function: endpoint singularities and spectral methods. J. Comput. Appl. Math. 244, 90–101 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Crane, L.J.: Flow past a stretching plate. Zeitschrift fur Angewandte Mathematik und Physik 21, 645–647 (1970)

    Article  Google Scholar 

  10. Dehghan, M., Saadatmandi, A.: The numerical solution of a nonlinear system of second-order boundary value problems using the Sinc-collocation method. Math. Comput. Model. 46, 1434–1441 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dehghan, M., Shakeri, F.: Approximate solution of a differential equation arising in astrophysics using the variational iteration method. New Astron. 13, 53–59 (2008)

    Article  Google Scholar 

  12. Delkhosh, M., Parand, K., Yousefi, H.: Accurate numerical solution for a type of astrophysics equations using three classes of Euler functions. Bull. Math. Soc. Sci. Math. Roum. 61(1), 39–49 (2018)

    MathSciNet  MATH  Google Scholar 

  13. Delkhosh, M., Parand, K.: A hybrid numerical method to solve nonlinear parabolic partial differential equations of time-arbitrary order. Comput. Appl. Math. 38, 76 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  14. Delkhosh, M., Parand, K.: Generalized pseudospectral method: theory and applications. J. Comput. Sci. 34, 11–32 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  15. Delkhosh, M., Parand, K., Domiri Ganji, D.: An efficient numerical method to solve the boundary layer flow of an Eyring–Powell non-Newtonian fluid. J. Appl. Comput. Mech. 5(2), 454–467 (2019)

    Google Scholar 

  16. Doha, E.H., Bhrawy, A.H., Hafez, R.M., Van Gorder, R.A.: Jacobi rational-Gauss collocation method for Lane–Emden equations of astrophysical significance. Nonlinear Anal. Model. Control 19, 537–550 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hayat, T., Iqbal, Z., Qasim, M., Obaidat, S.: Steady flow of an Eyring–Powell fluid over a moving surface with convective boundary conditional. Int. J. Heat Mass Transf. 55, 1817–1822 (2012)

    Article  Google Scholar 

  18. Horedt, G.P.: Polytropes: Applications in Astrophysics and Related Fields. Kluwer Academic Publish, New York (2004)

    Google Scholar 

  19. Hoyt, J.W.: Some applications of non-Newtonian fluid flow. Rheol. Ser. 8, 797–826 (1999)

    Article  Google Scholar 

  20. Jalil, M., Asghar, S., Imran, S.M.: Self-similar solutions for the flow and heat transfer of Powell–Eyring fluid over a moving surface in a parallel free stream. Int. J. Heat Mass Transf. 65, 73–79 (2013)

    Article  Google Scholar 

  21. Kalaba, R.E.: On nonlinear differential equations, the maximum operation and monotone convergence. RAND Corporation (1957)

  22. Liverts, E.Z., Krivec, R., Mandelzweig, V.B.: Quasilinearization approach to the resonance calculations: the quartic oscillator. Phys. Scr. 77(4), 045004 (2008)

    Article  MATH  Google Scholar 

  23. Lu, D.C., Farooq, U., Hayat, T., Rashidi, M.M., Ramzan, M.: Computational analysis of three layer fluid model including a nanomaterial layer. Int. J. Heat Mass Transf. 122, 222–228 (2018)

    Article  Google Scholar 

  24. Mandelzweig, V.B.: Quasilinearization method and its verification on exactly solvable models in quantum mechanics. J. Math. Phys. 40, 6266–6291 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mukhopadhyay, S.: Slip effects on MHD boundary layer flow over an exponentially stretching sheet with suction/blowing and thermal radiation. Ain Shams Eng. J. 4, 485–491 (2013)

    Article  Google Scholar 

  26. Mandelzweig, V.B., Tabakin, F.: Quasilinearization approach to nonlinear problems in physics with application to nonlinear ODEs. Comput. Phys. Commun. 141, 268–281 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  27. Pandey, R.K., Kumar, N.: Solution of Lane–Emden type equations using Bernstein operational matrix of differentiation. New Astron. 17, 303–308 (2012)

    Article  Google Scholar 

  28. Parand, K., Delkhosh, M.: An effective numerical method for solving the nonlinear singular Lane–Emden type equations of various orders. Jurnal Teknologi 79(1), 25–36 (2017)

    Google Scholar 

  29. Parand, K., Khaleqi, S.: The rational Chebyshev of second kind collocation method for solving a class of astrophysics problems. Eur. Phys. J. Plus 131, 1–24 (2016)

    Article  Google Scholar 

  30. Parand, K., Pirkhedri, A.: Sinc-collocation method for solving astrophysics equations. New Astron. 15, 533–537 (2010)

    Article  Google Scholar 

  31. Parand, K., Taghavi, A.: Generalized Laguerre polynomials collocation method for solving Lane–Emden equation. Appl. Math. Sci. 60, 2955–2961 (2008)

    MathSciNet  MATH  Google Scholar 

  32. Parand, K., Ghaderi, A., Yousefi, H., Delkhosh, M.: A new approach for solving nonlinear Thomas–Fermi equation based on fractional order of rational Bessel functions. Electron. J. Differ. Equ. 2016, 331 (2016)

    MathSciNet  MATH  Google Scholar 

  33. Parand, K., Ghaderi-Kangavari, A., Delkhosh, M.: Two efficient computational algorithms to solve the nonlinear singular Lane–Emden equations. Astrophysics 63(1), 133–150 (2020)

    Article  Google Scholar 

  34. Parand, K., Moayeri, M.M., Latifi, S., Delkhosh, M.: A numerical investigation of the boundary layer flow of an Eyring–Powell fluid over a stretching sheet via rational Chebyshev functions. Eur. Phys. J. Plus 132(7), 325 (2017)

    Article  Google Scholar 

  35. Parand, K., Nikarya, M., Rad, J.A.: Solving non-linear Lane–Emden type equations using Bessel orthogonal functions collocation method. Celest. Mech. Dyn. Astron. 116, 97–107 (2013)

    Article  MathSciNet  Google Scholar 

  36. Parand, K., Shahini, M., Dehghan, M.: Rational Legendre pseudospectral approach for solving nonlinear differential equations of Lane-Emden type. J. Comput. Phys. 228, 8830–8840 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  37. Parand, K., Yousefi, H., Delkhosh, M., Ghaderi, A.: A novel numerical technique to obtain an accurate solution to the Thomas-Fermi equation. Eur. Phys. J. Plus 131(7), 228 (2016)

    Article  Google Scholar 

  38. Parand, K., Yousefi, H., Delkhosh, M.: A numerical approach to solve Lane–Emden type equations by the fractional order of rational Bernoulli functions. Rom. J. Phys. 62, 1–24 (2017)

    Google Scholar 

  39. Rashidi, M.M., Bagheri, S., Momoniat, E., Freidoonimehr, N.: Entropy analysis of convective MHD flow of third grade non-Newtonian fluid over a stretching sheet. Ain Shams Eng. J. 8(1), 77–85 (2017)

    Article  Google Scholar 

  40. Rashidi, M.M., Ghahremanian, S., Toghraie, D., Roy, P.: Effect of solid surface structure on the condensation flow of Argon in rough nanochannels with different roughness geometries using molecular dynamics simulation. Int. Commun. Heat Mass Transf. 117, 104741 (2020)

    Article  Google Scholar 

  41. Seidov, Z.F.: Lane–Emden equation: perturbation method (2004). arxiv:astroph/0402130

  42. Shen, J., Tang, T., Wang, L.L.: Spectral Methods: Algorithms, Analysis and Applications. Springer, New York (2011)

    Book  MATH  Google Scholar 

  43. Turkyilmazoglu, M.: Exact solutions for two-dimensional laminar flow over a continuously stretching or shrinking sheet in an electrically conducting quiescent couple stress fluid. Int. J. Heat Mass Transf. 72, 1–8 (2014)

    Article  Google Scholar 

  44. Wazwaz, A.M., Rach, R., Duan, J.S.: Adomian decomposition method for solving the Volterra integral form of the Lane—Emden equations with initial values and boundary conditions. Appl. Math. Comput. 219, 5004–5019 (2013)

    MathSciNet  MATH  Google Scholar 

  45. Yuzbasi, S.: A numerical approach for solving the high-order linear singular differential-difference equations. Comput. Math. Appl. 62, 2289–2303 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Delkhosh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delkhosh, M., Rahmanzadeh, A. & Shafiei, SF. Solving nonlinear differential equations in astrophysics and fluid mechanics using the generalized pseudospectral method. SeMA 78, 457–474 (2021). https://doi.org/10.1007/s40324-021-00246-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40324-021-00246-1

Keywords

Mathematics Subject Classification

Navigation