Skip to main content

Advertisement

Log in

The Legendre wavelet method for solving the steady flow of a third-grade fluid in a porous half space

  • Published:
SeMA Journal Aims and scope Submit manuscript

Abstract

In this study, based on the Legendre wavelet method, we will present a new efficient method to obtain the numerical solutions of a nonlinear ordinary differential equation arising in fluid dynamics. The Legendre wavelet collocation method (LWCM) will be used and problem is converted into a system of algebraic equations, where the solutions of obtained system are computed by using the Newton’s method. Finally some numerical examples are given to check the accuracy of proposed method and a comparison is made with the other methods which reflects the efficiency and capability of method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahmad, F.: A simple analytical solution for the steady flow of a third grade fluid in a porous half space. Commun. Nonlinear Sci. Numer. Simul. 14, 2848–2852 (2009). https://doi.org/10.1016/j.cnsns.2008.09.029

    Article  MATH  Google Scholar 

  2. Alam, J.M., Kevlahan, N.K.R., Vasilyev, O.V.: Simultaneous space-time adaptive wavelet solution of nonlinear parabolic differential equations. J. Comput. Phys. 214(2), 829–857 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aziz, I., ul Islam, S., Sarler, B.: Wavelets collocation methods for the numerical solution of elliptic bv problems. Appl. Math. Model. 37(1), 676–694 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Aziz, I., ul Islam, S., Asif, M.: Haar wavelet collocation method for three-dimensional elliptic partial differential equations. Comput. Math. Appl. 73(9), 2023–2034 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Banifatemi, E., Razzaghi, M., Yousefi, S.: Two-dimensional legendre wavelets method for the mixed Volterra–Fredholm integral equations. J. Vib. Control 13(11), 1667–1675 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Beylkin, G., Coifman, R., Rokhlin, V.: Fast wavelet transforms and numerical algorithms I. Commun. Pure Appl. Math. 44(2), 141–183 (1991). https://doi.org/10.1002/cpa.3160440202

    Article  MathSciNet  MATH  Google Scholar 

  7. Boyd, J.P.: Orthogonal rational functions on a semi-infinite interval. J. Comput. Phys. 70(1), 63–88 (1987). https://doi.org/10.1016/0021-9991(87)90002-7, http://www.sciencedirect.com/science/article/pii/0021999187900027

  8. Boyd, J.P.: Spectral methods using rational basis functions on an infinite interval. J. Comput. Phys. 69(1), 112–142 (1987). https://doi.org/10.1016/0021-9991(87)90158-6

    Article  MathSciNet  MATH  Google Scholar 

  9. Chui, C.K.: Wavelets: A Mathematical Tool for Signal Analysis. SIAM e-books, Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1997). https://books.google.com/books?id=362JiezGzR0C

  10. Constantinides, A.: Applied Numerical Methods with Personal Computers. McGraw-Hill, New York (1987)

    MATH  Google Scholar 

  11. Funaro, D.: Computational aspects of pseudospectral Laguerre approximations. Appl. Numer. Math. 6(6), 447–457 (1990). https://doi.org/10.1016/0168-9274(90)90003-X, http://www.sciencedirect.com/science/article/pii/016892749090003X

  12. Goedecker, S., Ivanov, O.: Solution of multiscale partial differential equations using wavelets. Comput. Phys. 12(6), 548 (1998)

    Article  Google Scholar 

  13. Guf, J.S., Jiang, W.S.: The Haar wavelets operational matrix of integration. Int. J. Syst. Sci. 27(7), 623–628 (1996). https://doi.org/10.1080/00207729608929258

    Article  MATH  Google Scholar 

  14. Guo, B-Y.: Gegenbauer approximation and its applications to differential equations on the whole line. J. Math. Anal. Appl. 226(1), 180–206 (1998). https://doi.org/10.1006/jmaa.1998.6025, http://www.sciencedirect.com/science/article/pii/S0022247X98960255

  15. Hayat, T., Shahzad, F., Ayub, M.: Analytical solution for the steady flow of the third grade fluid in a porous half space. Appl. Math. Model. 31(11), 2424–2432 (2007). https://doi.org/10.1016/j.apm.2006.09.008, http://www.sciencedirect.com/science/article/pii/S0307904X06002216

  16. Jameson, L.: On the wavelet based differentiation matrix. J. Sci. Comput. 8(3), 267–305 (1993). https://doi.org/10.1007/BF01060934

    Article  MathSciNet  MATH  Google Scholar 

  17. Jameson, L.: The differentiation matrix for Daubechies-based wavelets on an interval. SIAM J. Sci. Comput. 17(2), 498–516 (1996). https://doi.org/10.1137/S1064827593260176

    Article  MathSciNet  MATH  Google Scholar 

  18. Kazem, S., Rad, J.A., Parand, K., Abbasbandy, S.: A new method for solving steady flow of a third-grade fluid in a porous half space based on radial basis functions. Z. Naturforschung A 66(10–11), 591–598 (2011)

    Google Scholar 

  19. Liu, N., Lin, E.B.: Legendre wavelet method for numerical solutions of partial differential equations. Numer. Methods Partial Differ. Equ. 26(1), 81–94 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Parand, K., Hajizadeh, E.: Solving steady flow of a third-grade fluid in a porous half Space via normal and modified rational Christov functions collocation method. Z. Naturforschung A 69, 188–194 (2014). https://doi.org/10.5560/zna.2014-0006

    Article  Google Scholar 

  21. Parand, K., Razzaghi, M.: Rational Legendre approximation for solving some physical problems on semi-infinite intervals. Phys. Scr. 69(5), 353 (2004). http://stacks.iop.org/1402-4896/69/i=5/a=001

  22. Parand, K., Shahini, M., Dehghan, M.: Rational legendre pseudospectral approach for solving nonlinear differential equations of Lane–Emden type. J. Comput. Phys. 228(23), 8830–8840 (2009). https://doi.org/10.1016/j.jcp.2009.08.029

    Article  MathSciNet  MATH  Google Scholar 

  23. Razzaghi, M., Yousefi, S.: Legendre wavelets direct method for variational problems. Math. Comput. Simul. (MATCOM) 53(3), 185–192 (2000). https://ideas.repec.org/a/eee/matcom/v53y2000i3p185-192.html

  24. Razzaghi, M., Yousefi, S.: Legendre wavelets method for the solution of nonlinear problems in the calculus of variations. Math. Comput. Model. 34(1), 45–54 (2001). https://doi.org/10.1016/S0895-7177(01)00048-6, http://www.sciencedirect.com/science/article/pii/S0895717701000486

  25. Saadatmandi, A., Sanatkar, Z., Toufighi, S.P.: Computational methods for solving the steady flow of a third grade fluid in a porous half space. Appl. Math. Comput. 298, 133–140 (2017). https://doi.org/10.1016/j.amc.2016.11.018, http://www.sciencedirect.com/science/article/pii/S0096300316306865

  26. Shen, J.: Stable and efficient spectral methods in unbounded domains using Laguerre functions. SIAM J. Numer. Anal. 38(4), 1113–1133 (2000). https://doi.org/10.1137/S0036142999362936

    Article  MathSciNet  MATH  Google Scholar 

  27. ul Islam, S., Aziz, I., Sarler, B.: The numerical solution of second-order boundary-value problems by collocation method with the Haar wavelets. Math. Comput. Model. 52(1), 1577–1590 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. ul Islam, S., Sarler, B., Aziz, I., i Haq, F.: Haar wavelet collocation method for the numerical solution of boundary layer fluid flow problems. Int. J. Therm. Sci. 50(1), 686–697 (2011)

    Article  Google Scholar 

  29. ul Islam, S., Aziz, I., Al-Fhaid, A.S., Shah, A.: A numerical assessment of parabolic partial differential equations using Haar and Legendre wavelets. Appl. Math. Model. 37(23), 9455–9481 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Yousefi, S.A.: Legendre wavelets method for solving differential equations of Lane–Emden type. Appl. Math. Comput. 181(2), 1417–1422 (2006). https://doi.org/10.1016/j.amc.2006.02.031

    Article  MathSciNet  MATH  Google Scholar 

  31. Yousefi, S.A.: Legendre multiwavelet galerkin method for solving the hyperbolic telegraph equation. Numer. Methods Partial Differ. Equ. 26(3), 535–543 (2010)

    MathSciNet  MATH  Google Scholar 

  32. Yousefi, S., Razzaghi, M.: Legendre wavelets method for the nonlinear Volterra–Fredholm integral equations. Math. Comput. Simul. 70(1), 1–8 (2005). https://doi.org/10.1016/j.matcom.2005.02.035

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research was supported by Shahid Beheshti University and the research group of Scientific Computations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simin Shekarpaz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shekarpaz, S., Parand, K. & Azari, H. The Legendre wavelet method for solving the steady flow of a third-grade fluid in a porous half space. SeMA 76, 495–503 (2019). https://doi.org/10.1007/s40324-019-00188-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40324-019-00188-9

Keywords

Mathematics Subject Classification

Navigation