Skip to main content
Log in

On identifying fuzzy knees in fuzzy multi-criteria optimization problems

  • Published:
SeMA Journal Aims and scope Submit manuscript

Abstract

This paper introduces and analyzes the idea of fuzzy knee in fuzzy multi-criteria optimization problems. The fuzzy decision feasible region of the problem is constructed under a fuzzy inequality relation that is defined with the help of same points in fuzzy geometry. Then, fuzzy criteria feasible region is obtained through the image of the fuzzy decision feasible region by the criteria-vector-valued mapping. For the constructed fuzzy criteria feasible region, we define fuzzy knee and then propose a method to capture the fuzzy knee regions, along with the complete fuzzy Pareto set. All the studied ideas and methodologies are supported with suitable examples and pictorial illustrations. An engineering application of the presented method is also given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. A real-valued function \(\mu \) on a metric space M is called upper semi-continuous if for each real \(\alpha \), the set \(\{x \in M: \mu (x) \ge \alpha \}\) is closed in M (see [5, p. 67]).

  2. For two fuzzy sets \(\widetilde{A}\) and \(\widetilde{B}\) in X, the relation \(\widetilde{A} \subseteq \widetilde{B}\) holds when \(\mu (x|\widetilde{A}) \le \mu (x|\widetilde{B})\)\(\forall x \in X\).

References

  1. Bector, C.R., Chandra, S.: Fuzzy Mathematical Programming and Fuzzy Matrix Games, vol. 169. Springer, New York (2005)

    MATH  Google Scholar 

  2. Bellman, R.E., Zadeh, L.A.: Decision-making in a fuzzy environment. Manag. Sci. 17(4), B141–B164 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  3. Branke, J., Deb, K., Dierolf, H., Osswald, M.: Finding knees in multi-objective optimization. Lect. Notes Comput. Sci. 3242, 722–731 (2004)

    Article  Google Scholar 

  4. Carlsson, C., Fullér, R.: Fuzzy multiple criteria decision making: recent developments. Fuzzy Sets Syst. 78(2), 139–153 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Carothers, N.L.: Real Analysis. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

  6. Chakraborty, D., Ghosh, D.: Analytical fuzzy plane geometry II. Fuzzy Sets Syst. 243, 84–109 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Das, I.: On characterizing the knee of the pareto curve based on normal-boundary intersection. Struct. Multidiscip. Optim. 18(2), 107–115 (1999)

    Article  Google Scholar 

  8. Deb, K.: Multi-objective evolutionary algorithms: introducing bias among pareto-optimal solutions. In: Advances in Evolutionary Computing, pp. 263–292. Springer, New York (2003)

  9. Deb, K., Gupta, S.: Understanding knee points in bicriteria problems and their implications as preferred solution principles. Eng. Optim. 43(11), 1175–1204 (2011)

    Article  MathSciNet  Google Scholar 

  10. Ehrgott, M.: Multicriteria Optimization, vol. 491. Springer, New York (2005)

    MATH  Google Scholar 

  11. Ghosh, D., Chakraborty, D.: Analytical fuzzy plane geometry I. Fuzzy Sets Syst. 209, 66–83 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ghosh, D., Chakraborty, D.: Ideal cone: a new method to generate complete pareto set of multi-criteria optimization problems. In: Mathematics and Computing 2013, pp. 171–190. Springer, New York (2014)

  13. Ghosh, D., Chakraborty, D.: A new pareto set generating method for multi-criteria optimization problems. Oper. Res. Lett. 42(8), 514–521 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ghosh, D., Chakraborty, D.: A direction based classical method to obtain complete pareto set of multi-criteria optimization problems. Opsearch 52(2), 340–366 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ghosh, D., Chakraborty, D.: Analytical fuzzy plane geometry III. Fuzzy Sets Syst. 283, 83–107 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kahraman, C.: Fuzzy Multi-criteria Decision Making: Theory and Applications with Recent Developments, vol. 16. Springer, Berlin (2008)

    MATH  Google Scholar 

  17. Lai, Y.-J., Hwang, C.-L.: Fuzzy Multiple Objective Decision Making. Springer, Berlin (1994)

    Book  MATH  Google Scholar 

  18. Lai, Y.J., Hwang, C.L.: Fuzzy Mathematical Programming: Methods and Applications, vol. 169. Springer, New York (1995)

    MATH  Google Scholar 

  19. Li, X., Zhang, B., Li, H.: Computing efficient solutions to fuzzy multiple objective linear programming problems. Fuzzy Sets Syst. 157(10), 1328–1332 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Pareto, V.: Cours d’économie politique, vol. 1. Librairie Droz, Paris (1964)

    Book  Google Scholar 

  21. Rachmawati, L., Srinivasan, D.: A multi-objective evolutionary algorithm with weighted-sum niching for convergence on knee regions. In: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, pp. 749–750. ACM, New York (2006)

  22. Ramík, J.: Optimal solutions in optimization problem with objective function depending on fuzzy parameters. Fuzzy Sets Syst. 158(17), 1873–1881 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Rommelfanger, H.: Fuzzy linear programming and applications. Eur. J. Oper. Res. 92(3), 512–527 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wang, X., Ruan, D., Kerre, E.E.: Mathematics of Fuzziness. Basic Issues, vol. 245. Springer, New York (2009)

  25. Wu, H.C.: Using the technique of scalarization to solve the multiobjective programming problems with fuzzy coefficients. Math. Comput. Model. 48(1–2), 232–248 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zimmermann, H.J.: Fuzzy programming and linear programming with several objective functions. Fuzzy Sets Syst. 1(1), 45–55 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zimmermann, H.J., Zadeh, L.A., Gaines, B.R.: Fuzzy Sets and Decision Analysis, vol. 20. North Holland, Amsterdam (1984)

    MATH  Google Scholar 

  28. Zimmermann, H.J.: Fuzzy Set Theory—And Its Applications, 4th edn. Springer, New York (2001)

    Book  Google Scholar 

Download references

Acknowledgements

The author is truly thankful to the anonymous reviewers and editors for their valuable comments and suggestions to improve the paper. The author gratefully acknowledges the financial support through Early Career Research Award (ECR/2015/000467), Science & Engineering Research Board, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debdas Ghosh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, D. On identifying fuzzy knees in fuzzy multi-criteria optimization problems. SeMA 76, 343–364 (2019). https://doi.org/10.1007/s40324-018-0179-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40324-018-0179-8

Keywords

Mathematics Subject Classification

Navigation